论文标题

PointConvormer:基于点的卷积的复仇

PointConvFormer: Revenge of the Point-based Convolution

论文作者

Wu, Wenxuan, Fuxin, Li, Shan, Qi

论文摘要

我们介绍了PointConvormer,这是一个基于点云的深层网络体系结构的新颖构建块。受到概括理论的启发,PointConvormer结合了点卷积的思想,其中滤波器权重仅基于相对位置,而变形金刚则利用了基于特征的注意力。在PointConvormer中,使用附近点之间的特征差异计算出的注意力用于修改每个点的卷积权重。因此,我们从点卷积中保留了不变,而注意力有助于选择附近的相关点进行卷积。 PointConvormer适用于需要在点级别上的详细信息的多个任务,例如分割和场景流估计任务。我们使用多个数据集进行了两项任务,包括扫描仪,Semantickitti,FlyingThings3D和Kitti。我们的结果表明,PointConvormer提供的准确性速度折衷比经典的卷积,常规变压器和体素化的稀疏卷积方法。可视化表明,PointConvormer的性能类似于在平面区域上的卷积,而邻域选择效果对物体边界更强,表明它具有两全其美。

We introduce PointConvFormer, a novel building block for point cloud based deep network architectures. Inspired by generalization theory, PointConvFormer combines ideas from point convolution, where filter weights are only based on relative position, and Transformers which utilize feature-based attention. In PointConvFormer, attention computed from feature difference between points in the neighborhood is used to modify the convolutional weights at each point. Hence, we preserved the invariances from point convolution, whereas attention helps to select relevant points in the neighborhood for convolution. PointConvFormer is suitable for multiple tasks that require details at the point level, such as segmentation and scene flow estimation tasks. We experiment on both tasks with multiple datasets including ScanNet, SemanticKitti, FlyingThings3D and KITTI. Our results show that PointConvFormer offers a better accuracy-speed tradeoff than classic convolutions, regular transformers, and voxelized sparse convolution approaches. Visualizations show that PointConvFormer performs similarly to convolution on flat areas, whereas the neighborhood selection effect is stronger on object boundaries, showing that it has got the best of both worlds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源