论文标题
基于物理信息的神经网络的平均流量数据同化
Mean flow data assimilation based on physics-informed neural networks
论文作者
论文摘要
物理知识的神经网络(PINN)可用于求解部分微分方程(PDE),并通过将管理方程纳入神经网络训练中来识别隐藏的变量。在这项研究中,我们将PINNS应用于湍流平均流量数据的同化,并研究该方法从稀疏数据中识别不访问变量和闭合项的能力。使用高保真大型模拟(LES)数据和粒子图像速度法(PIV)测量的平均场,我们显示PINN适用于同时识别湍流中的多个缺失数量,并提供与所提供的PDE一致的连续和可区分的平均值。这样,可以提供一致和完整的均值状态,这对于线性化平均场方法至关重要。提出的方法不需要网格或离散化方案,易于实现,并且可用于广泛的应用程序,这使其成为流体力学中平均基于野外方法的非常有前途的工具。
Physics-informed neural networks (PINNs) can be used to solve partial differential equations (PDEs) and identify hidden variables by incorporating the governing equations into neural network training. In this study, we apply PINNs to the assimilation of turbulent mean flow data and investigate the method's ability to identify inaccessible variables and closure terms from sparse data. Using high-fidelity large-eddy simulation (LES) data and particle image velocimetry (PIV) measured mean fields, we show that PINNs are suitable for simultaneously identifying multiple missing quantities in turbulent flows and providing continuous and differentiable mean fields consistent with the provided PDEs. In this way, consistent and complete mean states can be provided, which are essential for linearized mean field methods. The presented method does not require a grid or discretization scheme, is easy to implement, and can be used for a wide range of applications, making it a very promising tool for mean field-based methods in fluid mechanics.