论文标题
用于PT登记的孤子的模量空间
Moduli spaces for PT-regularized solitons
论文作者
论文摘要
我们在1 + 1维中构建和分析模量空间(集体坐标)的经典田地理论,该维度在PT调节时具有具有实际能量的复杂稳定的多氧化溶液。对于可集成的Bullough-DODD模型,我们通过与确切的解决方案进行比较,即一维模量空间很好地捕获了一维溶液和两索溶液中心运动中心的主要特征。我们证明,即使是多雪体散射过程中的一soliton成分发生的时间延迟和空间位移也可以从模量空间分析中提取。我们提出了一个二维模量空间,以描述黑暗的两个双峰散射的成分之间新发现的三弹性散射。
We construct and analyse the moduli space (collective coordinates) for a classical field theory in 1 + 1 dimensions that possesses complex stable multi-soliton solutions with real energies when PT-regularized. For the integrable Bullough-Dodd model we show, by comparing with the exact solutions, that a one-dimensional moduli space captures well the main feature of the centre of mass motion of the one and two-soliton solutions. We demonstrate that even the time-delay and spatial displacements occurring for the one-soliton constituents in a multi-soliton scattering process can be extracted from a moduli space analysis. We propose a two dimensional moduli space to describe the newly found triple bouncing scattering amongst the constituents of a dark two double peakon scattering.