论文标题

基于距离的检测,分别分布的静默失败于19肺病变细分

Distance-based detection of out-of-distribution silent failures for Covid-19 lung lesion segmentation

论文作者

Gonzalez, Camila, Gotkowski, Karol, Fuchs, Moritz, Bucher, Andreas, Dadras, Armin, Fischbach, Ricarda, Kaltenborn, Isabel, Mukhopadhyay, Anirban

论文摘要

在高资源利用时期,胸部计算机断层扫描(CT)扫描中的地面玻璃不透性和固结的自动分割可能会减轻放射科医生的负担。但是,由于在分布(OOD)数据中默默失败,深度学习模型在临床常规中不受信任。我们提出了一种轻巧的OOD检测方法,该方法利用特征空间中的Mahalanobis距离,并无缝集成到最新的分割管道中。简单的方法甚至可以增加具有临床相关的不确定性定量的预训练模型。我们在四个胸部CT分布偏移和两个磁共振成像应用中验证我们的方法,即海马和前列腺的分割。我们的结果表明,所提出的方法在所有探索场景中有效地检测到遥远和近型样品。

Automatic segmentation of ground glass opacities and consolidations in chest computer tomography (CT) scans can potentially ease the burden of radiologists during times of high resource utilisation. However, deep learning models are not trusted in the clinical routine due to failing silently on out-of-distribution (OOD) data. We propose a lightweight OOD detection method that leverages the Mahalanobis distance in the feature space and seamlessly integrates into state-of-the-art segmentation pipelines. The simple approach can even augment pre-trained models with clinically relevant uncertainty quantification. We validate our method across four chest CT distribution shifts and two magnetic resonance imaging applications, namely segmentation of the hippocampus and the prostate. Our results show that the proposed method effectively detects far- and near-OOD samples across all explored scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源