论文标题
减少分配的加权霍奇理想
Weighted Hodge ideals of reduced divisors
论文作者
论文摘要
我们使用Birational几何形状和由局部定义方程引起的$ V $滤光的方法研究了沿着高表面的本地化的hodge和重量过滤。这些过滤产生了称为加权霍奇理想的理想或骨,其中包括伴随的理想和乘数理想。我们分析了它们的本地和全球性能,从中我们推断出与光滑品种超曲面的奇异性有关的应用。
We study the Hodge and weight filtrations on the localization along a hypersurface, using methods from birational geometry and the $V$-filtration induced by a local defining equation. These filtrations give rise to ideal sheaves called weighted Hodge ideals, which include the adjoint ideal and a multiplier ideal. We analyze their local and global properties, from which we deduce applications related to singularities of hypersurfaces of smooth varieties.