论文标题

Bures-hall合奏和Cauchy-Laguerre两矩阵模型的间隙概率

Gap probabilities for the Bures-Hall Ensemble and the Cauchy-Laguerre Two-Matrix Model

论文作者

Witte, N. S., Wei, L.

论文摘要

可以说,可以说研究量子机械密度矩阵的光谱,而没有对系统的知识,可以说是研究量指标和相关的井孔测量。我们研究了该模型频谱中差距的可能性,无论是在底部$ [0,s)$还是在top $(s,1] $处,利用了这种pfaffian point-pococess与同盟问题的连接在二维cauchy-laguerre bi-ordornogonal polynomial系统的确定性点过程中,现在$ ye $ weardor $与拉格尔密度相比,关于凯奇双交的多项式系统的新一般结果:尤其是一个新的基督教式 - 佛教级公式,重现核心和差异方程式,用于多项式及其相关的功能。重量的拉瓜类型密度,与考奇 - 拉瓜系​​统的直接相关性,我们在两个变形变量$ s,t $中构建了一个封闭的约束,非线性微分方程的封闭系统,并观察到复发,光谱和变形衍生结构形成了与Laxe equations的兼容和可集成的三分线。

The Bures metric and the associated Bures-Hall measure is arguably the best choice for studying the spectrum of the quantum mechanical density matrix with no apriori knowledge of the system. We investigate the probability of a gap in the spectrum of this model, either at the bottom $ [0,s) $ or at the top $ (s,1] $, utilising the connection of this Pfaffian point-process with the allied problem in the determinantal point-process of the two-dimensional Cauchy-Laguerre bi-orthogonal polynomial system, now deformed with two variables $s,t$. To this end we develop new general results about Cauchy bi-orthogonal polynomial system for a more general class of weights than the Laguerre densities: in particular a new Christoffel-Darboux formula, reproducing kernels and differential equations for the polynomials and their associated functions. This system is most simply expressed as rank-3 matrix variables and possesses an associated cubic bilinear form. Furthermore under specialisation to truncated Laguerre type densities for the weight, of direct relevance to the Cauchy-Laguerre system, we construct a closed system of constrained, nonlinear differential equations in two deformation variables $s,t$, and observe that the recurrence, spectral and deformation derivative structures form a compatible and integrable triplet of Lax equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源