论文标题

在强制磁化剪切流湍流中,向上和下梯度动量运输的近距离转运

Near-cancellation of up- and down-gradient momentum transport in forced magnetized shear-flow turbulence

论文作者

Tripathi, B., Fraser, A. E., Terry, P. W., Zweibel, E. G., Pueschel, M. J.

论文摘要

通过将其分解为初始剖面的无耗散线性特征模式,可以检查二维不稳定的剪切层,该二维不稳定的剪切层由二维不稳定的剪切层驱动。正如预期的那样,下梯度动量通量源自大规模的不稳定性。然而,确定了通过线性稳定但非线性激发的本征的大规模稳定的持续向上梯度动量传输,发现几乎可以通过不稳定模式取消下梯度传输。稳定模式通过通过能量转移到平均流量来耗尽大规模的湍流来影响这一点。这建立了一种物理机制,其基础是众所周知的观察结果,即由非线性的不稳定性形成的相干涡流减少了湍流的运输和波动,因为这种涡旋由稳定和不稳定的模式组成,它们的振幅几乎相等。然后量化磁场对非线性激发稳定模式的影响。即使施加了一个几乎完全抑制不稳定性的强磁场,稳定模式的上梯度运输至少是不稳定模式的下梯度传输的三分之二,而对于较弱的磁场,此部分的较低分数最高可达$ 98 \%$。这些效果持续存在,磁性prandtl数和强度的变化。最后,连续模式在能量上的重要性不大,但对于捕获磁波和麦克斯韦的应力至关重要。对于其饱和的湍流振幅,得出了一种简单的分析缩放定律。它预测降低速率是傅立叶波数的倒数,这是在数值模拟中证实的属性。

Visco-resistive magnetohydrodynamic turbulence, driven by a two-dimensional unstable shear layer that is maintained by an imposed body force, is examined by decomposing it into dissipationless linear eigenmodes of the initial profiles. The down-gradient momentum flux, as expected, originates from the large-scale instability. However, continual up-gradient momentum transport by large-scale linearly stable but nonlinearly excited eigenmodes is identified, and found to nearly cancel the down-gradient transport by unstable modes. The stable modes effectuate this by depleting the large-scale turbulent fluctuations via energy transfer to the mean flow. This establishes a physical mechanism underlying the long-known observation that coherent vortices formed from nonlinear saturation of the instability reduce turbulent transport and fluctuations, as such vortices are composed of both the stable and unstable modes, which are nearly equal in their amplitudes. The impact of magnetic fields on the nonlinearly excited stable modes is then quantified. Even when imposing a strong magnetic field that almost completely suppresses the instability, the up-gradient transport by the stable modes is at least two-thirds of the down-gradient transport by the unstable modes, whereas for weaker fields, this fraction reaches up to $98\%$. These effects are persistent with variations in magnetic Prandtl number and forcing strength. Finally, continuum modes are shown to be energetically less important, but essential for capturing the magnetic fluctuations and Maxwell stress. A simple analytical scaling law is derived for their saturated turbulent amplitudes. It predicts the fall-off rate as the inverse of the Fourier wavenumber, a property which is confirmed in numerical simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源