论文标题
保护相关性在违反贝尔不平等和联合映射游戏的基础测量中的相关性
Conservation of correlation in measurement underlying the violation of Bell inequalities and a game of joint mapping
论文作者
论文摘要
是什么强迫量子测量违反贝尔的不平等?假设无论测量如何,都可以分配给旋转 - $ \ frac {1} {2} $粒子(qubit)旋转的确定值,称为c值旋转变量,但是它可能需要任何连续的实际数字。进一步假设测量值将C值旋转变量从可能值的连续范围映射到二进制标准量子自旋值$ \ pm 1 $,同时保留了两部分相关性。在这里,我们表明确实可以构建这种C值的自旋变量。因此,在此模型中,可能会争辩说,相关性保护的要求迫使量子测量违反了准备状态时违反铃铛的不平等。然后,我们讨论一个统计游戏,该游戏捕获了测量模型,其中要求两方独立将一对实数的特定组合映射到对二进制数字对$ \ pm 1 $的对,并要求保留相关性。相关性的保护迫使游戏尊重钟声定理,这意味着没有一类游戏没有古典(即本地和确定性)策略可以赢得胜利。另一方面,可以使用用于纠缠旋转的合奏的量子策略 - $ \ frac {1} {2} $粒子和局部量子旋转测量的电路,可用于赢得游戏。
What compels quantum measurement to violate the Bell inequalities? Suppose that regardless of measurement, one can assign to a spin-$\frac{1}{2}$ particle (qubit) a definite value of spin, called c-valued spin variable, but, it may take any continuous real number. Suppose further that measurement maps the c-valued spin variable from the continuous range of possible values onto the binary standard quantum spin values $\pm 1$ while preserving the bipartite correlation. Here, we show that such c-valued spin variables can indeed be constructed. In this model, one may therefore argue that it is the requirement of conservation of correlation which compels quantum measurement to violate the Bell inequalities when the prepared state is entangled. We then discuss a statistical game which captures the model of measurement, wherein two parties are asked to independently map a specific ensemble of pairs of real numbers onto pairs of binary numbers $\pm 1$, under the requirement that the correlation is preserved. The conservation of correlation forces the game to respect the Bell theorem, which implies that there is a class of games no classical (i.e., local and deterministic) strategy can ever win. On the other hand, a quantum strategy with an access to an ensemble of entangled spin-$\frac{1}{2}$ particles and circuits for local quantum spin measurement, can be used to win the game.