论文标题
在定期淬灭二聚体中的浮光拓扑相变
Floquet topological phase transitions in a periodically quenched dimer
论文作者
论文摘要
我们报告了对定期淬灭的一维二聚体晶格的拓扑特性的理论调查,在每个驾驶期内,在分区时间$ t_p $,零件的恒定汉密尔顿量从$ h_1 $转换为$ h_2 $。我们检查了$ h_1 $和$ h_2 $的不同二聚化模式,以及与驱动参数的相互作用,导致拓扑状态在零能量和brillouin-floquet quasi-Energy区域的边缘出现。我们说明了不同的现象,包括在半学光谱中的两个边缘状态,拓扑转换以及从琐碎快照中产生零能拓扑状态的产生。还讨论了不同对称性在我们的结果中的作用。
We report on the theoretical investigation of the topological properties of a periodically quenched one-dimensional dimerized lattice where a piece-wise constant Hamiltonian switches from $h_1$ to $h_2$ at a partition time $t_p$ within each driving period $T$. We examine different dimerization patterns for $h_1$ and $h_2$ and the interplay with the driving parameters that lead to the emergence of topological states both at zero energy and at the edge of the Brillouin-Floquet quasi-energy zone. We illustrate different phenomena, including the occurrence of both edge states in a semimetal spectrum, the topological transitions, and the generation of zero-energy topological states from trivial snapshots. The role of the different symmetries in our results is also discussed.