论文标题

计算较高的图很难

Computing higher graph gonality is hard

论文作者

Morrison, Ralph, Tolley, Lucas

论文摘要

在多编码的分隔线理论中,图形的$ r^{th} $分隔度是该图上等级$ r $ divisor的最低程度。 Gijswijt等人证明了这一点。有限图的第一个分区性是计算的NP-HARD。我们概括了他们的论点,以证明计算所有$ r $的有限图的$ r^{th} $ divisorial gonality是NP-HARD。我们使用此结果来证明,计算有限图的$ r^{th} $稳定的分区gonality是NP-HARD,并计算$ r^{th} $ divisorial gonality for Metric图。我们还证明了这些问题是APX,我们研究了这些问题的NP完整性。

In the theory of divisors on multigraphs, the $r^{th}$ divisorial gonality of a graph is the minimum degree of a rank $r$ divisor on that graph. It was proved by Gijswijt et al. that the first divisorial gonality of a finite graph is NP-hard to compute. We generalize their argument to prove that it is NP-hard to compute the $r^{th}$ divisorial gonality of a finite graph for all $r$. We use this result to prove that it is NP-hard to compute $r^{th}$ stable divisorial gonality for a finite graph, and to compute $r^{th}$ divisorial gonality for a metric graph. We also prove these problems are APX-hard, and we study the NP-completeness of these problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源