论文标题

Terahertz通信系统中频谱分配的无监督学习方法

An Unsupervised Learning Approach for Spectrum Allocation in Terahertz Communication Systems

论文作者

Shafie, Akram, Li, Chunhui, Yang, Nan, Zhou, Xiangyun, Duong, Trung Q.

论文摘要

我们提出了一种新的频谱分配策略,在无监督学习的帮助下,用于多源Terahertz通信系统。在此策略中,自适应子频段带宽被认为是使感兴趣的频谱可以分为带宽不等的子兰。该策略减少了用户分子吸收损失的变化,从而提高了数据速率的性能。我们首先提出一个优化问题,以确定最佳的子频段带宽并传输功率,然后提出了基于学习的方法,以获取针对此问题的近距离解决方案。在拟议的方法中,我们首先训练深层神经网络(DNN),同时利用受构成问题的拉格朗日启发的损失函数。然后使用训练有素的DNN,我们近似近乎最佳的解决方案。数值结果表明,与现有方法相比,我们提出的基于学习的方法的方法达到了更高的数据速率,尤其是当兴趣范围内的分子吸收系数以高度非线性的方式变化时。

We propose a new spectrum allocation strategy, aided by unsupervised learning, for multiuser terahertz communication systems. In this strategy, adaptive sub-band bandwidth is considered such that the spectrum of interest can be divided into sub-bands with unequal bandwidths. This strategy reduces the variation in molecular absorption loss among the users, leading to the improved data rate performance. We first formulate an optimization problem to determine the optimal sub-band bandwidth and transmit power, and then propose the unsupervised learning-based approach to obtaining the near-optimal solution to this problem. In the proposed approach, we first train a deep neural network (DNN) while utilizing a loss function that is inspired by the Lagrangian of the formulated problem. Then using the trained DNN, we approximate the near-optimal solutions. Numerical results demonstrate that comparing to existing approaches, our proposed unsupervised learning-based approach achieves a higher data rate, especially when the molecular absorption coefficient within the spectrum of interest varies in a highly non-linear manner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源