论文标题
大规模扭转模型中的流氓波浪
Rogue waves in the massive Thirring model
论文作者
论文摘要
在本文中,通过使用kadomtsev-petviashvili(KP)层次结构降低方法得出大规模斜状模型(MT)模型中的一般流氓波解决方案,这些合理溶液是按照基质元素为基本schur polynomials的确定性来明确提出的。在还原过程中,仅通过仅一个约束关系的一个约束关系,即KP-TODA层次结构的Tau函数参数,这是一致的,包括一个索引和二维的三个维度。它发现MT模型中的流氓波解决方案依赖于两个背景参数,从而影响其方向和持续时间。 MT模型与许多其他耦合的集成系统不同,仅接受了明亮类型的流氓波,而高阶的流氓波则代表了基本型的叠加,其中不可还原参数决定了基本流氓波的排列模式。特别是,可以简单地将所有内部参数设置为零来实现每个顺序的超级流氓浪潮,从而导致唯一的巨大订单$ n $的幅度为$ 2n+1美元,即背景。在本质上,当一个内部参数之一时,讨论了流氓波模式。与其他可集成的方程相似,模式被证明与Yablonskii-Vorob'EV多项式层次结构结构相关联。
In this paper, general rogue wave solutions in the massive Thirring (MT) model are derived by using the Kadomtsev-Petviashvili (KP) hierarchy reduction method and these rational solutions are presented explicitly in terms of determinants whose matrix elements are elementary Schur polynomials. In the reduction process, three reduction conditions including one index- and two dimension-ones are proved to be consistent by only one constraint relation on parameters of tau-functions of the KP-Toda hierarchy.It is found that the rogue wave solutions in the MT model depend on two background parameters, which influence their orientation and duration. Differing from many other coupled integrable systems, the MT model only admits the rogue waves of bright-type, and the higher-order rogue waves represent the superposition of fundamental ones in which the non-reducible parameters determine the arrangement patterns of fundamental rogue waves. Particularly, the super rogue wave at each order can be achieved simply by setting all internal parameters to be zero, resulting in the amplitude of the sole huge peak of order $N$ being $2N+1$ times the background.Finally, rogue wave patterns are discussed when one of the internal parameters is large. Similar to other integrable equations, the patterns are shown to be associated with the root structures of the Yablonskii-Vorob'ev polynomial hierarchy through a linear transformation.