论文标题
马尔可夫量子在开莉树上的熵
Entropy of Quantum Markov states on Cayley trees
论文作者
论文摘要
在本文中,我们继续研究量子马尔可夫州(QMS)并定义其平均熵。此类熵在某些条件下明确计算。目前的工作在解决量子概率上最重要的开放问题之一方面取得了巨大的飞跃,该问题涉及量子马尔可夫田地的平均熵的计算。此外,它为与一维量子马尔可夫状态和链条相关的许多有趣的结果的概括开辟了新的观点。
In this paper, we continue the investigation of quantum Markov states (QMS) and define their mean entropies. Such entropies are explicitly computed under certain conditions. The present work takes a huge leap forward at tackling one of the most important open problems in quantum probability which concerns the calculations of mean entropies of quantum Markov fields. Moreover, it opens new perspective for the generalization of many interesting results related to the one dimensional quantum Markov states and chains to multi-dimensional cases.