论文标题

带有扩散的银河条谐振:一种分析模型,对钢丝物质晕动动力摩擦有影响

Galactic bar resonances with diffusion: an analytic model with implications for bar-dark matter halo dynamical friction

论文作者

Hamilton, Chris, Tolman, Elizabeth A., Arzamasskiy, Lev, Duarte, Vinícius N.

论文摘要

磁盘星系的世俗演化在很大程度上是由“颗粒”(恒星或暗物质)的轨道与非轴对称特征(螺旋臂或条形)旋转之间的共振驱动的。这种共振还可以解释以银河系和外部星系观察到的运动学和光度特征。在简化的情况下,这些共振相互作用已充分了解:例如,使用Binney,Monari等人率先使用的角度效法工具,很容易地分析了被困在稳定旋转棒的共振附近的测试粒子的动力学。但是,这种治疗方法并不能解决实际星系固有的随机性和混乱 - 除了少数例外,仅通过复杂的n体模拟而探索了少数例外的效果。在本文中,我们提出了一个简单的动力学方程,该方程描述了具有刚性旋转棒的轨道共振附近粒子的分布功能,从而扩散了颗粒的缓慢作用。我们为无量纲扩散强度$δ$的各种值求解该方程,然后将我们的理论应用于bar-Halo动力学摩擦的计算。对于$δ= 0 $,我们恢复了Tremaine&Weinberg的经典结果,由于谐振轨道的相结合,摩擦最终会消失。但是,对于$δ> 0 $,我们发现扩散会抑制相结合,从而导致有限的扭矩。我们的结果表明,随机性 - 无论是物理还是数值 - 倾向于增加bar -halo摩擦,并且宇宙学模拟中的条可能会遇到明显的人工放缓,即使数值两体放松时间比哈勃时间长得多。

The secular evolution of disk galaxies is largely driven by resonances between the orbits of 'particles' (stars or dark matter) and the rotation of non-axisymmetric features (spiral arms or a bar). Such resonances may also explain kinematic and photometric features observed in the Milky Way and external galaxies. In simplified cases, these resonant interactions are well understood: for instance, the dynamics of a test particle trapped near a resonance of a steadily rotating bar is easily analyzed using the angle-action tools pioneered by Binney, Monari and others. However, such treatments do not address the stochasticity and messiness inherent to real galaxies - effects which have, with few exceptions, been previously explored only with complex N-body simulations. In this paper, we propose a simple kinetic equation describing the distribution function of particles near an orbital resonance with a rigidly rotating bar, allowing for diffusion of the particles' slow actions. We solve this equation for various values of the dimensionless diffusion strength $Δ$, and then apply our theory to the calculation of bar-halo dynamical friction. For $Δ= 0$ we recover the classic result of Tremaine & Weinberg that friction ultimately vanishes, owing to the phase-mixing of resonant orbits. However, for $Δ> 0$ we find that diffusion suppresses phase-mixing, leading to a finite torque. Our results suggest that stochasticity - be it physical or numerical - tends to increase bar-halo friction, and that bars in cosmological simulations might experience significant artificial slowdown, even if the numerical two-body relaxation time is much longer than a Hubble time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源