论文标题
紧凑的单种子基于模块的激光系统在可运输的高精度原子重量表上
Compact single-seed, module-based laser system on a transportable high-precision atomic gravimeter
论文作者
论文摘要
基于可运输的$^{87} \ text {rb} $的基于单种子的紧凑型激光系统,基于高精度原子重量表。自由空间的声学调节器(AOM)和共振电位相调节器(EOM)提供了原子干涉测量法的所有所需的激光频率。从同一激光器衍生的两个光学路径之间的光学相锁环在两个激光频率之间提供了易于使用的频率操纵,分别使用AOM和AOM和EOM分别通过6.835 GHz隔开的激光频率。我们的方案避免了直接EOM调制方案中存在的寄生虫拉曼转变(直接以超精细分裂的频率调节),这对重力测量的准确性产生了不利影响。光学相锁环还为通过拉曼激光器的相位偏移提供了一种方便的振动补偿方法。此外,模块化设计方法允许在每个单独的光学模块上插入插件,并增加了光学系统的机械稳定性。我们以17.8 $μ\ text {gal} $稳定性在250秒的平均时间和2.5 $μ\ text {gal} $稳定性的时间内,以17.8 $μ\ text {gal} $稳定性在2小时的平均时间内证明了高精度重力测量。
A single-seed, module-based compact laser system is demonstrated on a transportable $^{87}\text{Rb}$-based high-precision atomic gravimeter. All the required laser frequencies for the atom interferometry are provided by free-space acousto-optic modulators (AOMs) and resonant electro-optic phase modulators (EOMs). The optical phase-locked loop between the two optical paths derived from the same laser provides an easy frequency manipulation between two laser frequencies separated by the hyperfine frequency of 6.835 GHz using an AOM and an EOM, respectively. Our scheme avoids parasite Raman transitions present in the direct EOM modulation scheme (modulating directly at the frequency of the hyperfine splitting), which have detrimental effects on the accuracy of the gravity measurements. The optical phase-locked loop also provides a convenient way for vibration compensation through the Raman lasers' phase offset. Furthermore, the modular design approach allows plug-and-play nature on each individual optic module and also increases the mechanical stability of the optical systems. We demonstrate high-precision gravity measurements with 17.8 $μ\text{Gal}$ stability over 250 seconds averaging time and 2.5 $μ\text{Gal}$ stability over 2 h averaging time.