论文标题

在概要调查中自动检测光回波:有关深卷积神经网络的应用的考虑

Toward automated detection of light echoes in synoptic surveys: considerations on the application of the Deep Convolutional Neural Networks

论文作者

Li, Xiaolong, Bianco, Federica B., Dobler, Gregory, Partoush, Roee, Rest, Armin, Acero-Cuellar, Tatiana, Clarke, Riley, Fortino, Willow Fox, Khakpash, Somayeh, Lian, Ming

论文摘要

光回声(LES)是天体物理瞬变从星际灰尘中的反射。它们令人着迷的天文现象,可以研究散射灰尘以及原始瞬变。但是,LES很少见,并且非常难以检测,因为它们看起来像是微弱,弥漫性,随着时间的推移的特征。 LE的检测仍然很大程度上依赖于人类对图像的检查,这是大型概要调查时代不可行的方法。 Vera C. rubin天文台的遗产调查对空间和时间LSST的调查将以高空间分辨率,精美的图像质量以及超过成千上万的平方度天空生成前所未有的天文成像数据:理想的调查。但是,鲁宾数据处理管道已优化用于检测点源,并将完全错过LES。在过去的几年中,人工智能(AI)对象检测框架已经实现并超过了实时的人类水平的性能。在这项工作中,我们从地图集望远镜中准备一个数据集并测试流行的AI对象检测框架,您只能看一次,或者在计算机视觉社区中开发的Yolo,以证明AI在天文图像中检测LES的潜力。我们发现,即使使用尺寸和质量有限的数据集,AI框架也可以达到人类水平的性能。我们探索并强调挑战,包括阶级失衡和标签不完整,以及路线图建立端到端管道所需的工作,以自动检测和研究高通量天文学调查中的LES。

Light Echoes (LEs) are the reflections of astrophysical transients off of interstellar dust. They are fascinating astronomical phenomena that enable studies of the scattering dust as well as of the original transients. LEs, however, are rare and extremely difficult to detect as they appear as faint, diffuse, time-evolving features. The detection of LEs still largely relies on human inspection of images, a method unfeasible in the era of large synoptic surveys. The Vera C. Rubin Observatory Legacy Survey of Space and Time, LSST, will generate an unprecedented amount of astronomical imaging data at high spatial resolution, exquisite image quality, and over tens of thousands of square degrees of sky: an ideal survey for LEs. However, the Rubin data processing pipelines are optimized for the detection of point-sources and will entirely miss LEs. Over the past several years, Artificial Intelligence (AI) object detection frameworks have achieved and surpassed real-time, human-level performance. In this work, we prepare a dataset from the ATLAS telescope and test a popular AI object detection framework, You Only Look Once, or YOLO, developed in the computer vision community, to demonstrate the potential of AI in the detection of LEs in astronomical images. We find that an AI framework can reach human-level performance even with a size- and quality-limited dataset. We explore and highlight challenges, including class imbalance and label incompleteness, and roadmap the work required to build an end-to-end pipeline for the automated detection and study of LEs in high-throughput astronomical surveys.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源