论文标题
油脂:基于GNN的建议产生事实和反事实解释
GREASE: Generate Factual and Counterfactual Explanations for GNN-based Recommendations
论文作者
论文摘要
最近,图形神经网络(GNN)已被广泛用于开发成功的推荐系统。尽管功能强大,但基于GNN的建议系统很难附上明显的解释,说明为什么特定项目最终在给定用户的建议列表中。确实,解释基于GNN的建议是独特的,而现有的GNN解释方法是不合适的,原因有两个。首先,传统的GNN解释方法是为节点,边缘或图形分类任务而不是排名而设计的,如推荐系统中。其次,标准的机器学习解释通常旨在支持熟练的决策者。相反,建议是为任何最终用户设计的,因此应以用户理解的方式提供其解释。在这项工作中,我们提出了润滑脂,这是一种解释任何基于黑盒GNN的建议系统提供的建议的新方法。具体而言,Grease首先在目标用户项目对及其$ L $ -HOP社区上训练替代模型。然后,它通过找到最佳的邻接矩阵扰动来捕获足够和必要的条件,分别推荐一个项目,从而生成事实和反事实解释。在现实世界数据集上进行的实验结果表明,油脂可以为流行的基于GNN的推荐模型产生简洁有效的解释。
Recently, graph neural networks (GNNs) have been widely used to develop successful recommender systems. Although powerful, it is very difficult for a GNN-based recommender system to attach tangible explanations of why a specific item ends up in the list of suggestions for a given user. Indeed, explaining GNN-based recommendations is unique, and existing GNN explanation methods are inappropriate for two reasons. First, traditional GNN explanation methods are designed for node, edge, or graph classification tasks rather than ranking, as in recommender systems. Second, standard machine learning explanations are usually intended to support skilled decision-makers. Instead, recommendations are designed for any end-user, and thus their explanations should be provided in user-understandable ways. In this work, we propose GREASE, a novel method for explaining the suggestions provided by any black-box GNN-based recommender system. Specifically, GREASE first trains a surrogate model on a target user-item pair and its $l$-hop neighborhood. Then, it generates both factual and counterfactual explanations by finding optimal adjacency matrix perturbations to capture the sufficient and necessary conditions for an item to be recommended, respectively. Experimental results conducted on real-world datasets demonstrate that GREASE can generate concise and effective explanations for popular GNN-based recommender models.