论文标题

分散与差异:隐藏变异性可以在可视化社会成果时鼓励刻板印象

Dispersion vs Disparity: Hiding Variability Can Encourage Stereotyping When Visualizing Social Outcomes

论文作者

Holder, Eli, Xiong, Cindy

论文摘要

可视化研究通常集中于感知准确性或帮助读者解释关键信息。但是,我们对图表设计如何影响读者对数据背后的人的看法了解甚少。具体而言,设计是否可以与读者的社会认知偏见相互作用,以使有害刻板印象永久化?例如,在分析社会不平等时,条形图是在种族,性别或其他群体之间提出结果差异的流行选择。但是,条形图可能会鼓励赤字思维,这是对结果差异的看法是由团体的个人优势或缺陷而不是外部因素引起的。然后,这些错误的个人归因可以增强有关被可视化组的刻板印象。我们进行了四个实验,研究了影响归因偏见的设计选择(因此是赤字思维)。人群工人查看了可视化的描述,描绘了掩盖数据(例如条形图或点图)中的可变性的社会成果,或者强调数据的可变性,例如抖动图或预测间隔。他们报告了他们对可视化差异的个人和外部解释的同意。总体而言,当参与者看到隐藏组内变异性的可视化时,他们更多地同意了个人解释。当他们看到强调组内变异性的可视化效果时,他们就个人解释的同意就较少。这些结果表明,有关社会不平等的数据可视化可能会以有害方式误解并导致刻板印象。设计选择会影响这些偏见:隐藏变异性倾向于增加刻板印象,同时强调可变性会降低它。

Visualization research often focuses on perceptual accuracy or helping readers interpret key messages. However, we know very little about how chart designs might influence readers' perceptions of the people behind the data. Specifically, could designs interact with readers' social cognitive biases in ways that perpetuate harmful stereotypes? For example, when analyzing social inequality, bar charts are a popular choice to present outcome disparities between race, gender, or other groups. But bar charts may encourage deficit thinking, the perception that outcome disparities are caused by groups' personal strengths or deficiencies, rather than external factors. These faulty personal attributions can then reinforce stereotypes about the groups being visualized. We conducted four experiments examining design choices that influence attribution biases (and therefore deficit thinking). Crowdworkers viewed visualizations depicting social outcomes that either mask variability in data, such as bar charts or dot plots, or emphasize variability in data, such as jitter plots or prediction intervals. They reported their agreement with both personal and external explanations for the visualized disparities. Overall, when participants saw visualizations that hide within-group variability, they agreed more with personal explanations. When they saw visualizations that emphasize within-group variability, they agreed less with personal explanations. These results demonstrate that data visualizations about social inequity can be misinterpreted in harmful ways and lead to stereotyping. Design choices can influence these biases: Hiding variability tends to increase stereotyping while emphasizing variability reduces it.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源