论文标题

稳定可计算的形式系统的不完整

Incompleteness for stably computable formal systems

论文作者

Savelyev, Yasha

论文摘要

我们证明,对于稳定的计算列出的形式系统,我们的第一和第二不完整定理的直接类似物。一个典型的稳定计算列出的集合是没有整数解决方案的一组diophantine方程,尤其是这样的集合通常无法计算。因此,这将第二次不完整定理的第一个扩展到非经典的正式系统。让我们通过某种物理应用来激励这一点。令$ \ Mathcal {H} $为人类数学输出的合适无限时间限制(稳定在论文意义上),专门用算术语言(为简单起见),专门用于一阶句子,并理解为正式系统。假设形成$ \ Mathcal {H} $的所有相关物理过程都是可以计算的。然后按照定义的$ \ MATHCAL {H} $ MAY \ emph {not}是可以计算的,但可以稳定地枚举。因此,适用于$ \ Mathcal {H} $的经典Gödel分离是毫无意义的,但是将我们的不完整定理应用于$ \ Mathcal {h} $,我们然后获得Gödel的Sharper版本的gödeldisnuction:假设$ \ naby $ \ nathcal {h} \ vdash pa $ in COMPUT ON COMPUT ON COMPAY MANTIS ONS CONT CONT CONT CONT CONT ST ST ST ST ST ST ST ST ST ST ST ST ST ST SCAN表示计算。 $ \ MATHCAL {H} $不是1键(尤其是声音不合理)或$ \ Mathcal {H} $无法证明算术的某些真实陈述(如果另外$ \ Mathcal {h} $是2-符合的,则不能证明它。

We prove, for stably computably enumerable formal systems, direct analogues of the first and second incompleteness theorems of Gödel. A typical stably computably enumerable set is the set of Diophantine equations with no integer solutions, and in particular such sets are generally not computably enumerable. And so this gives the first extension of the second incompleteness theorem to non classically computable formal systems. Let's motivate this with a somewhat physical application. Let $\mathcal{H} $ be the suitable infinite time limit (stabilization in the sense of the paper) of the mathematical output of humanity, specializing to first order sentences in the language of arithmetic (for simplicity), and understood as a formal system. Suppose that all the relevant physical processes in the formation of $\mathcal{H} $ are Turing computable. Then as defined $\mathcal{H} $ may \emph{not} be computably enumerable, but it is stably computably enumerable. Thus, the classical Gödel disjunction applied to $\mathcal{H} $ is meaningless, but applying our incompleteness theorems to $\mathcal{H} $ we then get a sharper version of Gödel's disjunction: assume $\mathcal{H} \vdash PA$ then either $\mathcal{H} $ is not stably computably enumerable or $\mathcal{H} $ is not 1-consistent (in particular is not sound) or $\mathcal{H} $ cannot prove a certain true statement of arithmetic (and cannot disprove it if in addition $\mathcal{H} $ is 2-consistent).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源