论文标题
多普勒:将SQL工作负载迁移到云中的自动化SKU建议
Doppler: Automated SKU Recommendation in Migrating SQL Workloads to the Cloud
论文作者
论文摘要
选择最佳的云目标以将SQL庄园从本地迁移到云仍然是一个挑战。当前的解决方案不仅耗时且容易出错,需要大量的用户输入,而且还没有提供适当的建议。我们提出了Doppler,这是一种可扩展的推荐引擎,可提供右尺寸的Azure SQL平台AS-A-Service(PAAS)建议,而无需访问敏感的客户数据和查询。多普勒介绍了一种新颖的价格绩效方法,该方法使客户仅基于低级资源统计数据(例如延迟和内存使用情况)获得了相关云目标的个性化等级。多普勒将其对Azure客户行为的内部知识进行补充,以帮助指导新的移民客户实现一个最佳目标。在9个月内的实验结果来自潜在客户和现有客户,这表明多普勒可以识别最佳目标并适应客户工作负载的变化。它还发现了过多的云客户的省钱机会,而不会损害容量或其他要求。多普勒已被整合并发布到Azure数据迁移助理v5.5中,该v5.5每天收到数百个评估请求。
Selecting the optimal cloud target to migrate SQL estates from on-premises to the cloud remains a challenge. Current solutions are not only time-consuming and error-prone, requiring significant user input, but also fail to provide appropriate recommendations. We present Doppler, a scalable recommendation engine that provides right-sized Azure SQL Platform-as-a-Service (PaaS) recommendations without requiring access to sensitive customer data and queries. Doppler introduces a novel price-performance methodology that allows customers to get a personalized rank of relevant cloud targets solely based on low-level resource statistics, such as latency and memory usage. Doppler supplements this rank with internal knowledge of Azure customer behavior to help guide new migration customers towards one optimal target. Experimental results over a 9-month period from prospective and existing customers indicate that Doppler can identify optimal targets and adapt to changes in customer workloads. It has also found cost-saving opportunities among over-provisioned cloud customers, without compromising on capacity or other requirements. Doppler has been integrated and released in the Azure Data Migration Assistant v5.5, which receives hundreds of assessment requests daily.