论文标题

使用扩张的U-NET深度学习体系结构自动超声图像分割

Automatic Ultrasound Image Segmentation of Supraclavicular Nerve Using Dilated U-Net Deep Learning Architecture

论文作者

Miyatake, Mizuki, Nerella, Subhash, Simpson, David, Pawlowicz, Natalia, Stern, Sarah, Tighe, Patrick, Rashidi, Parisa

论文摘要

医学图像中的自动对象识别可以促进医学诊断和治疗。在本文中,我们在超声图像中自动将上神经分段,以帮助注入周围神经块。神经阻滞通常用于手术后的疼痛治疗,其中使用超声指导在靶神经旁边注入局部麻醉药。这种治疗可以阻止疼痛信号向大脑的传播,这可以帮助提高手术中的恢复率,并显着减少术后阿片类药物的需求。但是,超声引导的区域麻醉(UGRA)要求麻醉师在视觉上识别超声图像中的实际神经位置。鉴于超声图像中神经的无视觉效果以及它们与许多相邻组织的视觉相似性,这是一项复杂的任务。在这项研究中,我们使用了自动神经检测系统进行UGRA神经阻滞治疗。该系统可以使用深度学习技术在超声图像中识别神经的位置。我们开发了一个模型来捕获神经的特征,通过训练两个具有跳过连接的深神经网络:两种扩展的U-NET体系结构,有或没有扩张的卷积。该溶液可能会导致区域麻醉中靶向神经的封锁。

Automated object recognition in medical images can facilitate medical diagnosis and treatment. In this paper, we automatically segmented supraclavicular nerves in ultrasound images to assist in injecting peripheral nerve blocks. Nerve blocks are generally used for pain treatment after surgery, where ultrasound guidance is used to inject local anesthetics next to target nerves. This treatment blocks the transmission of pain signals to the brain, which can help improve the rate of recovery from surgery and significantly decrease the requirement for postoperative opioids. However, Ultrasound Guided Regional Anesthesia (UGRA) requires anesthesiologists to visually recognize the actual nerve position in the ultrasound images. This is a complex task given the myriad visual presentations of nerves in ultrasound images, and their visual similarity to many neighboring tissues. In this study, we used an automated nerve detection system for the UGRA Nerve Block treatment. The system can recognize the position of the nerve in ultrasound images using Deep Learning techniques. We developed a model to capture features of nerves by training two deep neural networks with skip connections: two extended U-Net architectures with and without dilated convolutions. This solution could potentially lead to an improved blockade of targeted nerves in regional anesthesia.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源