论文标题
生成转移学习:COVID-19与几个胸部X射线图像的分类
Generative Transfer Learning: Covid-19 Classification with a few Chest X-ray Images
论文作者
论文摘要
通过医学成像检测疾病由于其非侵入性性质而被首选。医学成像支持多种数据模式,可以在人体内部进行彻底快速的外观。但是,解释成像数据通常很耗时,需要大量的人类专业知识。深度学习模型可以加快解释并减轻人类专家的工作。但是,这些模型是数据密集型的,需要大量标记的图像进行培训。在新型疾病暴发(例如Covid-19)中,我们通常没有所需的标记成像数据,尤其是在流行病开始时。深度转移学习通过在公共领域中使用验证的模型来解决此问题,例如任何VGGNET,RESNET,INCEPTION,DENSENET等的变体都是功能学习者,以快速从较少的样本中适应目标任务。大多数审慎的模型都具有复杂的体系结构。他们接受了大型多级数据集(例如ImageNet)的培训,并在建筑设计和超级参数调整方面进行了重大努力。我们提出了1个更简单的生成源模型,在单个但相关的概念上预估计,可以与现有较大的较大预审预告额的模型一样有效。我们证明了生成转移学习的有用性,该学习需要较少的计算和培训数据,对于少数射击学习(FSL),使用COVID-19-19,二进制分类用例。我们将经典的深度转移学习与我们的方法进行了比较,还报告了FSL结果,三个设置为84、20和10个培训样本。用于COVID-19分类的生成FSL的模型实现可在https://github.com/suvarnak/generativefslcovid.git上公开获得。
Detection of diseases through medical imaging is preferred due to its non-invasive nature. Medical imaging supports multiple modalities of data that enable a thorough and quick look inside a human body. However, interpreting imaging data is often time-consuming and requires a great deal of human expertise. Deep learning models can expedite interpretation and alleviate the work of human experts. However, these models are data-intensive and require significant labeled images for training. During novel disease outbreaks such as Covid-19, we often do not have the required labeled imaging data, especially at the start of the epidemic. Deep Transfer Learning addresses this problem by using a pretrained model in the public domain, e.g. any variant of either VGGNet, ResNet, Inception, DenseNet, etc., as a feature learner to quickly adapt the target task from fewer samples. Most pretrained models are deep with complex architectures. They are trained with large multi-class datasets such as ImageNet, with significant human efforts in architecture design and hyper parameters tuning. We presented 1 a simpler generative source model, pretrained on a single but related concept, can perform as effectively as existing larger pretrained models. We demonstrate the usefulness of generative transfer learning that requires less compute and training data, for Few Shot Learning (FSL) with a Covid-19 binary classification use case. We compare classic deep transfer learning with our approach and also report FSL results with three settings of 84, 20, and 10 training samples. The model implementation of generative FSL for Covid-19 classification is available publicly at https://github.com/suvarnak/GenerativeFSLCovid.git.