论文标题
非线性鲍尔茨曼方程的保守光谱求解器的多学科基准测试
Multidisciplinary benchmarks of a conservative spectral solver for the nonlinear Boltzmann equation
论文作者
论文摘要
Boltzmann方程描述了在二元碰撞下经典粒子的相位概率分布的演变。它的近似是几个学术领域的基础,包括空气动力学和血浆物理学。尽管这些近似值在其各自的域中是适当的,但它们可能会在利基市场中违反,但需要多种应用,这些应用需要直接数值解决方案的原始非线性玻尔兹曼方程。 Galerkin-Petrov保守频谱算法的扩展实施用于研究各种物理问题。通过分布式的预抄写启用,可以在现代个人硬件上几秒钟内实现空间均匀的玻尔兹曼方程的解决方案,而空间构成问题的问题可以在几分钟内解决。在几个领域,包括弱离子化等离子体,气态流体和原子质 - 血压相互作用的背景下,介绍了针对分析理论预测和与其他玻尔兹曼求解器的比较的几个基准。
The Boltzmann equation describes the evolution of the phase-space probability distribution of classical particles under binary collisions. Approximations to it underlie the basis for several scholarly fields, including aerodynamics and plasma physics. While these approximations are appropriate in their respective domains, they can be violated in niche but diverse applications which require direct numerical solution of the original nonlinear Boltzmann equation. An expanded implementation of the Galerkin-Petrov conservative spectral algorithm is employed to study a wide variety of physical problems. Enabled by distributed precomputation, solutions of the spatially homogeneous Boltzmann equation can be achieved in seconds on modern personal hardware, while spatially-inhomogeneous problems are solvable in minutes. Several benchmarks against both analytic theoretical predictions and comparisons to other Boltzmann solvers are presented in the context of several domains including weakly ionized plasma, gaseous fluids, and atomic-plasma interaction.