论文标题

任务对齐基于元学习的增强图,以进行冷启动建议

Task Aligned Meta-learning based Augmented Graph for Cold-Start Recommendation

论文作者

Shi, Yuxiang, Ding, Yue, Chen, Bo, Huang, Yuyang, Wang, Yule, Tang, Ruiming, Wang, Dong

论文摘要

由于缺乏用户项目的交互,因此寒冷的启动问题是推荐系统的长期挑战,这对新用户和项目的建议效果极大地损害了建议。最近,基于元学习的方法试图在所有用户中学习全球共享的先验知识,这些方法可以迅速适应新用户和互动很少的项目。尽管具有显着的性能提高,但全球共享的参数可能会导致局部最佳。此外,它们忽略了新用户和项目中存在的固有信息和功能交互,这在冷启动方案中至关重要。在本文中,我们提出了一个基于元学习的增强图(TMAG)的任务,以解决冷启动建议。具体而言,提出了一个细粒度的任务对齐构造函数,以聚集类似的用户并为元学习的任务分配,从而实现了一致的优化方向。此外,具有两种图形增强方法的增强图神经网络旨在减轻数据稀疏性并捕获高阶用户项目相互作用。我们在各种冷启动场景中验证了三个现实世界数据集的方法,显示了TMAG优于最先进的方法,以进行冷启动建议。

The cold-start problem is a long-standing challenge in recommender systems due to the lack of user-item interactions, which significantly hurts the recommendation effect over new users and items. Recently, meta-learning based methods attempt to learn globally shared prior knowledge across all users, which can be rapidly adapted to new users and items with very few interactions. Though with significant performance improvement, the globally shared parameter may lead to local optimum. Besides, they are oblivious to the inherent information and feature interactions existing in the new users and items, which are critical in cold-start scenarios. In this paper, we propose a Task aligned Meta-learning based Augmented Graph (TMAG) to address cold-start recommendation. Specifically, a fine-grained task aligned constructor is proposed to cluster similar users and divide tasks for meta-learning, enabling consistent optimization direction. Besides, an augmented graph neural network with two graph enhanced approaches is designed to alleviate data sparsity and capture the high-order user-item interactions. We validate our approach on three real-world datasets in various cold-start scenarios, showing the superiority of TMAG over state-of-the-art methods for cold-start recommendation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源