论文标题

克莱尼人团体通过自我加入的刚性

Rigidity of Kleinian groups via self-joinings

论文作者

Kim, Dongryul M., Oh, Hee

论文摘要

令$γ<\ mathrm {psl} _2(\ Mathbb {c})\ simeq \ simeq \ Mathrm {isom}^+(\ Mathbb {h}^3)$是有限生成的非fuch量生成的非fuch量生成的kleinian组,其普通集$ω= \ mathbb {令$ρ:γ\ to \ mathrm {psl} _2(\ mathbb {c})$为忠实的离散的非英寸式代表,带有边界图$ f:λ\ to \ mathbb {s s}^2 $在极限集上。 在本文中,我们获得了一种新的刚性定理:如果$ f $是{\ it $λ$}的综合性,从某种意义上说,$ f $ ap $ f $映射到圆圈中的每一个$λ$的每个圆形切片,则$ f $将扩展到möbius$ g $ g $ g $ g $ $ g $ on $ \ nathbb {s}^2 $ and $ $ $ g $ g $ g $ g g $ g $ g $ g $ g $ g。此外,除非$ρ$是一种偶像,否则一组圆圈$ c $,以使$ f(c \capλ)$包含在一个圆圈中,在所有圆圈的空间中都有空的内部装饰,满足$λ$。这回答了麦克穆伦(McMullen)对地图的刚度$λ\ to \ mathbb {s}^2 $发送的一个问题,将每个四面体的每个四面体的顶点发送到零元素的四面体的顶点。 我们的证明的新颖性是将$γ$与自动键合$(\ Mathrm {id} \ timesρ)(γ)<\ Mathrm {psl} _2(\ Mathbb {C})\ times \ times \ Mathrm {pslm {pslm {psl} _2(c)(c \ nath)(c \ nath)$ {pslm {pslm {psligrm {pslrm {$ {

Let $Γ<\mathrm{PSL}_2(\mathbb{C})\simeq \mathrm{Isom}^+(\mathbb{H}^3)$ be a finitely generated non-Fuchsian Kleinian group whose ordinary set $Ω=\mathbb{S}^2-Λ$ has at least two components. Let $ρ: Γ\to \mathrm{PSL}_2(\mathbb{C})$ be a faithful discrete non-Fuchsian representation with boundary map $f:Λ\to \mathbb{S}^2$ on the limit set. In this paper, we obtain a new rigidity theorem: if $f$ is {\it conformal on $Λ$}, in the sense that $f$ maps every circular slice of $Λ$ into a circle, then $f$ extends to a Möbius transformation $g$ on $\mathbb{S}^2$ and $ρ$ is the conjugation by $g$. Moreover, unless $ρ$ is a conjugation, the set of circles $C$ such that $f(C\cap Λ)$ is contained in a circle has empty interior in the space of all circles meeting $Λ$. This answers a question asked by McMullen on the rigidity of maps $Λ\to \mathbb{S}^2$ sending vertices of every tetrahedron of zero-volume to vertices of a tetrahedron of zero-volume. The novelty of our proof is a new viewpoint of relating the rigidity of $Γ$ with the higher rank dynamics of the self-joining $(\mathrm{id} \times ρ)(Γ)<\mathrm{PSL}_2(\mathbb{C})\times \mathrm{PSL}_2(\mathbb{C})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源