论文标题
看到您的睡眠阶段:从脑电图到红外视频的跨模式蒸馏
Seeing your sleep stage: cross-modal distillation from EEG to infrared video
论文作者
论文摘要
对于诊断各种疾病的诊断,对睡眠阶段进行分类至关重要。然而,现有的自动诊断方法主要采用“金标准”局部脑电图(EEG)或医院中多个单模仪(PSG)机器的其他单型模式传感信号,这些信号很昂贵,昂贵,导入且因此不适合在家中进行护理点监测。为了启用在家中的睡眠阶段监控,我们在本文中分析了红外视频与脑电图信号之间的关系,并提出了一项新任务:通过将有用的知识从EEG信号提炼到视觉视频,使用红外视频对睡眠阶段进行分类。为了为该应用程序建立可靠的跨模式基准,我们开发了一个新的数据集,称为通过红外视频和脑电图($ s^3ve $)看到您的睡眠阶段。 $ s^3ve $是一个大规模数据集,包括用于睡眠阶段分类的同步红外视频和脑电图信号,包括105个主题和154,573个视频剪辑,长度超过1100小时。我们的贡献不仅限于数据集,而且还涉及一种新型的跨模式蒸馏基线模型,即结构吸引的对比度蒸馏(SACD),以将脑电图知识提升为红外视频特征。 SACD在我们的$ S^3ve $和现有的跨模式蒸馏基准上都实现了最先进的表演。基准方法和基线方法都将被释放给社区。我们希望在睡眠阶段分类中提高更多注意力,并促进更多的发展,更重要的是,从临床信号/媒体到传统媒体的跨模式蒸馏。
It is inevitably crucial to classify sleep stage for the diagnosis of various diseases. However, existing automated diagnosis methods mostly adopt the "gold-standard" lectroencephalogram (EEG) or other uni-modal sensing signal of the PolySomnoGraphy (PSG) machine in hospital, that are expensive, importable and therefore unsuitable for point-of-care monitoring at home. To enable the sleep stage monitoring at home, in this paper, we analyze the relationship between infrared videos and the EEG signal and propose a new task: to classify the sleep stage using infrared videos by distilling useful knowledge from EEG signals to the visual ones. To establish a solid cross-modal benchmark for this application, we develop a new dataset termed as Seeing your Sleep Stage via Infrared Video and EEG ($S^3VE$). $S^3VE$ is a large-scale dataset including synchronized infrared video and EEG signal for sleep stage classification, including 105 subjects and 154,573 video clips that is more than 1100 hours long. Our contributions are not limited to datasets but also about a novel cross-modal distillation baseline model namely the structure-aware contrastive distillation (SACD) to distill the EEG knowledge to infrared video features. The SACD achieved the state-of-the-art performances on both our $S^3VE$ and the existing cross-modal distillation benchmark. Both the benchmark and the baseline methods will be released to the community. We expect to raise more attentions and promote more developments in the sleep stage classification and more importantly the cross-modal distillation from clinical signal/media to the conventional media.