论文标题

BCC铁中的原子裂缝通过主动学习高斯近似潜力揭示

Atomistic fracture in bcc iron revealed by active learning of Gaussian approximation potential

论文作者

Zhang, Lei, Csányi, Gábor, van der Giessen, Erik, Maresca, Francesco

论文摘要

以人体中心(BCC)铁中原子骨折机制的预测对于理解其半脆性性质至关重要。基于经典的原子势能加载裂纹尖端变形机制的现有原子模拟会产生与预测相矛盾的。为了以量子精度启用断裂预测,我们通过扩展铁磁BCC铁的密度功能理论(DFT)数据库,使用主动学习策略开发高斯近似势(GAP)。我们应用主动学习算法,并在广泛的应力强度因子(SIF)和四个裂纹系统上获得最大预测误差为8 MEV/ATOM的Fe间隙模型。分析了该方法的学习效率,并将预测的关键SIF与Griffith和大米理论进行了比较。模拟表明,沿原始裂纹平面的裂解是{100}和{110}裂纹平面在t = 0k处的裂纹机理,因此解决了长期存在的争议。我们的工作还强调了对预测断裂和内在延展性的多尺度方法的需求,在这种方法中应明确考虑有限温度,有限的加载速率效应和预先存在的缺陷(例如纳米伏,脱位)。

The prediction of atomistic fracture mechanisms in body-centred cubic (bcc) iron is essential for understanding its semi-brittle nature. Existing atomistic simulations of the crack-tip deformation mechanisms under mode-I loading based on classical interatomic potentials yield contradicting predictions. To enable fracture prediction with quantum accuracy, we develop a Gaussian approximation potential (GAP) using an active learning strategy by extending a density functional theory (DFT) database of ferromagnetic bcc iron. We apply the active learning algorithm and obtain a Fe GAP model with a maximum predicted error of 8 meV/atom over a broad range of stress intensity factors (SIFs) and for four crack systems. The learning efficiency of the approach is analysed, and the predicted critical SIFs are compared with Griffith and Rice theories. The simulations reveal that cleavage along the original crack plane is the crack tip mechanism for {100} and {110} crack planes at T=0K, thus settling a long-standing dispute. Our work also highlights the need for a multiscale approach to predicting fracture and intrinsic ductility, whereby finite temperature, finite loading rate effects and pre-existing defects (e.g. nanovoids, dislocations) should be taken explicitly into account.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源