论文标题

ICIP 2022在微观图像中挑战寄生卵检测和分类:数据集,方法和结果

ICIP 2022 Challenge on Parasitic Egg Detection and Classification in Microscopic Images: Dataset, Methods and Results

论文作者

Anantrasirichai, Nantheera, Chalidabhongse, Thanarat H., Palasuwan, Duangdao, Naruenatthanaset, Korranat, Kobchaisawat, Thananop, Nunthanasup, Nuntiporn, Boonpeng, Kanyarat, Ma, Xudong, Achim, Alin

论文摘要

手动检查粪便涂片样品以鉴定寄生卵的存在非常耗时,只能由专家进行。因此,需要自动化系统来解决此问题,因为它可能与严重的肠道寄生虫感染有关。本文回顾了微观图像中关于寄生卵检测和分类的ICIP 2022挑战。我们描述了此应用程序的新数据集,该数据集是同类数据集的最大数据集。参与者在挑战中使用的方法及其结果及其结果进行了汇总和讨论。

Manual examination of faecal smear samples to identify the existence of parasitic eggs is very time-consuming and can only be done by specialists. Therefore, an automated system is required to tackle this problem since it can relate to serious intestinal parasitic infections. This paper reviews the ICIP 2022 Challenge on parasitic egg detection and classification in microscopic images. We describe a new dataset for this application, which is the largest dataset of its kind. The methods used by participants in the challenge are summarised and discussed along with their results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源