论文标题
SIM2REAL用于使用可执行数字双胞胎的自动驾驶汽车控制
Sim2real for Autonomous Vehicle Control using Executable Digital Twin
论文作者
论文摘要
在这项工作中,我们提出了一种SIM2REAL方法,以基于可执行的数字双(XDT),将非线性模型预测控制器(NMPC)从仿真到实际目标系统。 XDT模型是高保真车辆动力学模拟器,在控制参数随机和学习过程中可在线可执行。这些参数适应逐渐改善控制性能并处理不断变化的现实环境。特别是,对于控制参数,性能指标不需要可区分或分析性,并且系统动力学无需线性化。最终,所提出的SIM2REAL框架完全利用了在线高保真模拟器,数据驱动估算以及基于模拟的优化,以有效地传输和适应模拟环境中开发的控制器到真实平台。我们的实验表明,在没有繁琐的时间和劳动消耗调整的情况下,实现了高控制性能。
In this work, we propose a sim2real method to transfer and adapt a nonlinear model predictive controller (NMPC) from simulation to the real target system based on executable digital twin (xDT). The xDT model is a high fidelity vehicle dynamics simulator, executable online in the control parameter randomization and learning process. The parameters are adapted to gradually improve control performance and deal with changing real-world environment. In particular, the performance metric is not required to be differentiable nor analytical with respect to the control parameters and system dynamics are not necessary linearized. Eventually, the proposed sim2real framework leverages altogether online high fidelity simulator, data-driven estimations, and simulation based optimization to transfer and adapt efficiently a controller developed in simulation environment to the real platform. Our experiment demonstrates that a high control performance is achieved without tedious time and labor consuming tuning.