论文标题
calderón的界限 - Zygmund操作员在球campanato型功能空间上
Boundedness of Calderón--Zygmund operators on ball Campanato-type function spaces
论文作者
论文摘要
令$ x $为$ {\ mathbb r}^n $上的Ball Quasi-Banach功能空间,满足一些温和的假设。在本文中,作者首先找到一个合理的版本$ \ wideTilde {t} $ ofcalderón--Zygmund操作员$ t $ t $ $ t $在ball campanato-type函数$ \ MATHCAL {l} _ {x,x,q,q,q,s,s,s,s,d}( $ s \ in \ mathbb {z} _+^n $和$ d \ in(0,\ infty)$。然后,作者证明了$ \ widetilde {t} $在$ \ mathcal {l} _ {x,x,q,s,d}(\ m athbb {r}^n)$时,并且仅在任何$γ\ in \ Mathbb {z}^n _ _ _+$ | c $ |γ$ |γ$ |γ$ |γ$ |γ$ | $ t^*(x^γ)= 0 $,因此很清晰。此外,$ \ widetilde {t} $被证明是$ t $的伴随运营商,这进一步增强了$ \ widetilde {t} $的定义的合理性。所有这些结果都有广泛的应用。特别是,即使它们分别应用于加权的Lebesgue空间,可变的Lebesgue空间,Orlicz空间,Orlicz-Slice空间,Morrey空间,混合 - norm Lebesgue Space,局部广义的HERZ Space和混合 - norm Herz Space,所有获得的结果都是新的。这些结果的证明在很大程度上取决于正在考虑的$ t $的内核的属性,也取决于$ \ Mathcal {l} _ {x,q,q,s,d}(\ Mathbb {r}^n)上的双重定理。
Let $X$ be a ball quasi-Banach function space on ${\mathbb R}^n$ satisfying some mild assumptions. In this article, the authors first find a reasonable version $\widetilde{T}$ of the Calderón--Zygmund operator $T$ on the ball Campanato-type function space $\mathcal{L}_{X,q,s,d}(\mathbb{R}^n)$ with $q\in[1,\infty)$, $s\in\mathbb{Z}_+^n$, and $d\in(0,\infty)$. Then the authors prove that $\widetilde{T}$ is bounded on $\mathcal{L}_{X,q,s,d}(\mathbb{R}^n)$ if and only if, for any $γ\in\mathbb{Z}^n_+$ with $|γ|\leq s$, $T^*(x^γ)=0$, which is hence sharp. Moreover, $\widetilde{T}$ is proved to be the adjoint operator of $T$, which further strengthens the rationality of the definition of $\widetilde{T}$. All these results have a wide range of applications. In particular, even when they are applied, respectively, to weighted Lebesgue spaces, variable Lebesgue spaces, Orlicz spaces, Orlicz-slice spaces, Morrey spaces, mixed-norm Lebesgue spaces, local generalized Herz spaces, and mixed-norm Herz spaces, all the obtained results are new. The proofs of these results strongly depend on the properties of the kernel of $T$ under consideration and also on the dual theorem on $\mathcal{L}_{X,q,s,d}(\mathbb{R}^n)$.