论文标题
综合氧化:全向神经辐射场的快速而精确的重建方法
OmniVoxel: A Fast and Precise Reconstruction Method of Omnidirectional Neural Radiance Field
论文作者
论文摘要
本文提出了一种用等值的全向图像重建神经辐射场的方法。带有辐射场的隐式神经场景表示可以在有限的空间区域内连续重建场景的3D形状。但是,培训商业PC硬件上完全隐含的表示需要大量时间和计算资源(15 $ \ sim $ 20小时$ 20小时)。因此,我们提出了一种可以大大加速此过程的方法(每个场景20 $ \ sim $ 40分钟)。我们采用特征体素,其中包含张量中的密度和颜色特征。考虑全向等值的输入和摄像机布局,我们使用球形体素化来表示表示而不是立方表示。我们的体素化方法可以平衡内部场景和外部场景的重建质量。此外,我们在颜色特征上采用了与轴对准的位置编码方法,以提高总图像质量。我们的方法可以在随机摄像头姿势上实现满足合成数据集的经验性能。此外,我们使用包含复杂几何形状并实现最先进的性能的真实场景测试我们的方法。我们的代码和完整数据集将与纸质出版物同时发布。
This paper proposes a method to reconstruct the neural radiance field with equirectangular omnidirectional images. Implicit neural scene representation with a radiance field can reconstruct the 3D shape of a scene continuously within a limited spatial area. However, training a fully implicit representation on commercial PC hardware requires a lot of time and computing resources (15 $\sim$ 20 hours per scene). Therefore, we propose a method to accelerate this process significantly (20 $\sim$ 40 minutes per scene). Instead of using a fully implicit representation of rays for radiance field reconstruction, we adopt feature voxels that contain density and color features in tensors. Considering omnidirectional equirectangular input and the camera layout, we use spherical voxelization for representation instead of cubic representation. Our voxelization method could balance the reconstruction quality of the inner scene and outer scene. In addition, we adopt the axis-aligned positional encoding method on the color features to increase the total image quality. Our method achieves satisfying empirical performance on synthetic datasets with random camera poses. Moreover, we test our method with real scenes which contain complex geometries and also achieve state-of-the-art performance. Our code and complete dataset will be released at the same time as the paper publication.