论文标题
基于CNN的大脑MR分割中人口偏见的研究
A Study of Demographic Bias in CNN-based Brain MR Segmentation
论文作者
论文摘要
卷积神经网络(CNN)越来越多地用于自动化磁共振(MR)图像中脑结构的分割,以进行研究。在其他应用中,CNN模型在训练集中的代表性不足时已显示出针对某些人群群体的偏见。在这项工作中,我们研究了CNN大脑MR分割模型是否有可能在接受不平衡训练集训练时遏制性别或种族偏见。我们使用白人受试者中不同水平的性不平衡训练快速冲浪模型的多个实例。我们分别评估白人男性和白人女性测试套件以评估性别偏见的性能,并在黑人男性和黑人女性测试套装上评估它们,以评估潜在的种族偏见。我们发现分割模型性能中的重大性行为和种族偏见影响。这些偏见具有很强的空间成分,一些大脑区域表现出比其他大脑更强的偏见。总体而言,我们的结果表明,种族偏见比性别偏见更为重要。我们的研究表明,在为基于CNN的大脑MR分割的训练集时考虑种族和性别平衡的重要性,以避免通过有偏见的研究研究结果来维持甚至加剧现有的健康不平等。
Convolutional neural networks (CNNs) are increasingly being used to automate the segmentation of brain structures in magnetic resonance (MR) images for research studies. In other applications, CNN models have been shown to exhibit bias against certain demographic groups when they are under-represented in the training sets. In this work, we investigate whether CNN models for brain MR segmentation have the potential to contain sex or race bias when trained with imbalanced training sets. We train multiple instances of the FastSurferCNN model using different levels of sex imbalance in white subjects. We evaluate the performance of these models separately for white male and white female test sets to assess sex bias, and furthermore evaluate them on black male and black female test sets to assess potential racial bias. We find significant sex and race bias effects in segmentation model performance. The biases have a strong spatial component, with some brain regions exhibiting much stronger bias than others. Overall, our results suggest that race bias is more significant than sex bias. Our study demonstrates the importance of considering race and sex balance when forming training sets for CNN-based brain MR segmentation, to avoid maintaining or even exacerbating existing health inequalities through biased research study findings.