论文标题

替代辅助多目标神经体系结构搜索实时语义细分

Surrogate-assisted Multi-objective Neural Architecture Search for Real-time Semantic Segmentation

论文作者

Lu, Zhichao, Cheng, Ran, Huang, Shihua, Zhang, Haoming, Qiu, Changxiao, Yang, Fan

论文摘要

深度神经网络中的建筑进步导致了跨越一系列计算机视觉任务的巨大飞跃。神经建筑搜索(NAS)并没有依靠人类的专业知识,而是成为自动化建筑设计的有前途的途径。尽管图像分类的最新成就提出了机会,但NAS的承诺尚未对更具挑战性的语义细分任务进行彻底评估。将NAS应用于语义分割的主要挑战是由两个方面出现的:(i)要处理的高分辨率图像; (ii)针对自动驾驶等应用的实时推理速度(即实时语义细分)的其他要求。为了应对此类挑战,我们在本文中提出了一种替代辅助的多目标方法。通过一系列自定义预测模型,我们的方法有效地将原始的NAS任务转换为普通的多目标优化问题。其次是用于填充选择的层次预筛选标准,我们的方法逐渐实现了一组有效的体系结构在分割精度和推理速度之间的交易。对三个基准数据集的经验评估以及使用华为Atlas 200 dk的应用程序的实证评估表明,我们的方法可以识别架构的表现明显超过了人类专家手动设计的现有最新体系结构,也可以通过其他NAS方法自动自动设计。

The architectural advancements in deep neural networks have led to remarkable leap-forwards across a broad array of computer vision tasks. Instead of relying on human expertise, neural architecture search (NAS) has emerged as a promising avenue toward automating the design of architectures. While recent achievements in image classification have suggested opportunities, the promises of NAS have yet to be thoroughly assessed on more challenging tasks of semantic segmentation. The main challenges of applying NAS to semantic segmentation arise from two aspects: (i) high-resolution images to be processed; (ii) additional requirement of real-time inference speed (i.e., real-time semantic segmentation) for applications such as autonomous driving. To meet such challenges, we propose a surrogate-assisted multi-objective method in this paper. Through a series of customized prediction models, our method effectively transforms the original NAS task into an ordinary multi-objective optimization problem. Followed by a hierarchical pre-screening criterion for in-fill selection, our method progressively achieves a set of efficient architectures trading-off between segmentation accuracy and inference speed. Empirical evaluations on three benchmark datasets together with an application using Huawei Atlas 200 DK suggest that our method can identify architectures significantly outperforming existing state-of-the-art architectures designed both manually by human experts and automatically by other NAS methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源