论文标题
超级三角形的角度缺陷
Angle Defect for Super Triangles
论文作者
论文摘要
我们证明,角度缺陷减去超级双曲三角形的面积并非零相同,并明确计算纯粹的费米子差异。这反驳了n = 1超级双曲线几何形状的角度缺陷定理,并提供了新型的超级三角形的非平凡添加功能。证明技术涉及实际的正交组OOSP(1 | 2),其对维度2,1 | 1的真实超级Minkowski空间和蛮力计算的作用。
We prove that the angle defect minus the area of a super hyperbolic triangle is not identically zero and explicitly compute the purely fermionic difference. This disproves the Angle Defect Theorem for N=1 super hyperbolic geometry and provides a novel non-trivial additive function of super triangles. The proof techniques involve the real orthosymplectic group OSp(1|2) in its action on the real super Minkowski space of dimension 2,1|1 and brute-force computation.