论文标题
在结构混乱的$ n $ vector模型的新通用类中,具有远距离互动
On the new universality class in structurally disordered $n$-vector model with long-range interactions
论文作者
论文摘要
我们研究了一个区域的稳定边界,在该区域中,$ n $ vector模型具有远程幂律衰减相互作用的稳定边界是由结构性疾病的存在引起的(例如弱淬灭稀释稀释)。该边框由订单参数$ n_c $的边际维度给出,取决于空间尺寸,$ d $,以及交互衰减的控制参数,$σ$,下面是该模型属于新稀释诱导的普遍性类。利用HARRIS标准和近期的纯模型的现场理论重新归一化组结果,我们可以通过远程交互作用获得$ N_C $作为三环$ε=2σ-D $ -Expansion。我们为$ n_c $应用系列重新召集方法提供数值。我们的结果表明,不仅Ising系统($ n = 1 $)可以属于$ d = 2 $和$ d = 3 $的新型疾病引起的远程通用类。
We study a stability border of a region where nontrivial critical behaviour of an $n$-vector model with long-range power-law decaying interactions is induced by the presence of a structural disorder (e.g. weak quenched dilution). This border is given by the marginal dimension of the order parameter $n_c$ dependent on space dimension, $d$, and a control parameter of the interaction decay, $σ$, below which the model belongs to the new dilution-induced universality class. Exploiting the Harris criterion and recent field-theoretical renormalization group results for the pure model with long-range interactions we get $n_c$ as a three loop $ε=2σ-d$-expansion. We provide numerical values for $n_c$ applying series resummation methods. Our results show that not only the Ising systems ($n=1$) can belong to the new disorder-induced long-range universality class at $d=2$ and $d=3$.