论文标题

用于空气动力学分类的量子支持向量机

Quantum support vector machines for aerodynamic classification

论文作者

Yuan, Xi-Jun, Chen, Zi-Qiao, Liu, Yu-Dan, Xie, Zhe, Jin, Xian-Min, Liu, Ying-Zheng, Wen, Xin, Tang, Hao

论文摘要

空气动力学在航空业和飞机设计中起着重要作用。检测和最小化与机翼上散射压力数据的流动分离现象对于确保稳定有效的航空至关重要。但是,由于了解流场分离的力学是具有挑战性的,因此强调空气动力学参数以识别和控制流动分离。已经使用传统算法和机器学习方法(例如支持向量机(SVM)模型)对其进行了广泛的研究。最近,人们对量子计算及其在广泛研究社区中的应用的兴趣越来越大,这阐明了使用量子技术解决空气动力学问题的兴趣。在本文中,我们采用基于量子退火模型的量子SVM算法QSVM,以确定是否存在流动分离,与广泛使用的经典SVM相比,其性能。我们表明,对于此二进制分类任务,我们的方法的精度从0.818增加到0.909,其精度提高了11.1%。我们进一步基于单算法的算法开发多类QSVM。我们将其应用于将多种类型的攻击角度分类到翅膀上,在该机翼上,维持比经典多级对应物的优势从0.67增加到0.79,提高了17.9%。我们的工作展示了一种有用的量子技术,用于分类流动分离方案,并可能促进用于流体动力学中量子计算应用的丰富研究。

Aerodynamics plays an important role in aviation industry and aircraft design. Detecting and minimizing the phenomenon of flow separation from scattered pressure data on airfoil is critical for ensuring stable and efficient aviation. However, since it is challenging to understand the mechanics of flow field separation, the aerodynamic parameters are emphasized for the identification and control of flow separation. It has been investigated extensively using traditional algorithms and machine learning methods such as the support vector machine (SVM) models. Recently, a growing interest in quantum computing and its applications among wide research communities sheds light upon the use of quantum techniques to solve aerodynamic problems. In this paper, we apply qSVM, a quantum SVM algorithm based on the quantum annealing model, to identify whether there is flow separation, with their performance in comparison to the widely-used classical SVM. We show that our approach outperforms the classical SVM with an 11.1% increase of the accuracy, from 0.818 to 0.909, for this binary classification task. We further develop multi-class qSVMs based on one-against-all algorithm. We apply it to classify multiple types of the attack angles to the wings, where the advantage over the classical multi-class counterpart is maintained with an accuracy increased from 0.67 to 0.79, by 17.9%. Our work demonstrates a useful quantum technique for classifying flow separation scenarios, and may promote rich investigations for quantum computing applications in fluid dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源