论文标题
随机分区中的通用尖缩缩放
Universal Cusp Scaling in Random Partitions
论文作者
论文摘要
我们研究了遵守Schur度量的随机分区的通用缩放限制。扩展了我们先前的分析[ARXIV:2012.06424],我们获得了高阶Pearcey内核,描述了尖端缩放限制中的多临界行为。我们探索与较高的皮尔西内核相关的间隙概率,并在较大的间隙极限下得出耦合的非线性微分方程和渐近行为。
We study the universal scaling limit of random partitions obeying the Schur measure. Extending our previous analysis [arXiv:2012.06424], we obtain the higher-order Pearcey kernel describing the multi-critical behavior in the cusp scaling limit. We explore the gap probability associated with the higher Pearcey kernel, and derive the coupled nonlinear differential equation and the asymptotic behavior in the large gap limit.