论文标题

潜在鹰派工艺可以用于流行病学建模吗?

Can a latent Hawkes process be used for epidemiological modelling?

论文作者

Lamprinakou, Stamatina, Gandy, Axel, McCoy, Emma

论文摘要

了解Covid-19的传播是众多研究的主题,突出了可靠的流行模型的重要性。在这里,我们使用带有时间协变量的潜在霍克斯工艺引入了一种新型的流行模型,用于建模感染。与其他模型不同,我们通过基础鹰队过程驱动的概率分布进行对报告的情况进行建模。通过霍克斯过程对感染进行建模,使我们能够估计受感染者感染的人。我们提出了一个内核密度颗粒滤波器(KDPF),以推断潜在病例和繁殖数,并在不久的将来预测新病例。计算工作与感染的数量成正比,使使用粒子滤波器类型算法(例如KDPF)成为可能。我们证明了拟议的算法对合成数据集的性能,而Covid-19报告了英国各个地方当局的案例,并将我们的模型基于替代方法。

Understanding the spread of COVID-19 has been the subject of numerous studies, highlighting the significance of reliable epidemic models. Here, we introduce a novel epidemic model using a latent Hawkes process with temporal covariates for modelling the infections. Unlike other models, we model the reported cases via a probability distribution driven by the underlying Hawkes process. Modelling the infections via a Hawkes process allows us to estimate by whom an infected individual was infected. We propose a Kernel Density Particle Filter (KDPF) for inference of both latent cases and reproduction number and for predicting the new cases in the near future. The computational effort is proportional to the number of infections making it possible to use particle filter type algorithms, such as the KDPF. We demonstrate the performance of the proposed algorithm on synthetic data sets and COVID-19 reported cases in various local authorities in the UK, and benchmark our model to alternative approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源