论文标题

在Moebius可变形的超曲面上

On the Moebius deformable hypersurfaces

论文作者

Jimenez, M. I., Tojeiro, R.

论文摘要

在文章[\ emph {保存möbius公制和还原定理的超曲面的变形}中,adv。数学。 256 (2014), 156--205], Li, Ma and Wang investigated the interesting class of Moebius deformable hypersurfaces, that is, the umbilic-free Euclidean hypersurfaces $f\colon M^n\to \mathbb{R}^{n+1}$ that admit non-trivial deformations preserving the Moebius metric.然而,在上述文章中指出的Moebius变形的高度曲面$ n \ geq 4 $的分类错过了大量示例。在本文中,我们完成了$ n \ geq 5 $的分类。

In the article [\emph{Deformations of hypersurfaces preserving the Möbius metric and a reduction theorem}, Adv. Math. 256 (2014), 156--205], Li, Ma and Wang investigated the interesting class of Moebius deformable hypersurfaces, that is, the umbilic-free Euclidean hypersurfaces $f\colon M^n\to \mathbb{R}^{n+1}$ that admit non-trivial deformations preserving the Moebius metric. The classification of Moebius deformable hypersurfaces of dimension $n\geq 4$ stated in the aforementioned article, however, misses a large class of examples. In this article we complete that classification for $n\geq 5$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源