论文标题

胎儿脑MRI中皮质板分割的多维拓扑损失

Multi-dimensional topological loss for cortical plate segmentation in fetal brain MRI

论文作者

de Dumast, Priscille, Kebiri, Hamza, Dunet, Vincent, Koob, Mériam, Cuadra, Meritxell Bach

论文摘要

胎儿皮质板(CP)在子宫内发育过程中经历了急剧的形态变化。因此,CP的生长和折叠模式是评估大脑发育和成熟的关键指标。磁共振成像(MRI)提供了特定的见解,用于分析定量成像生物标志物。但是,准确,更重要的是,拓扑正确的MR图像分割仍然是该分析的关键基线。在这项研究中,我们提出了一个深度学习分割框架,用于自动和形态上对胎儿脑MRI中CP的分割。我们的贡献是两个折。首先,我们概括了多维拓扑损失函数,以提高拓扑精度。其次,我们引入了孔比,这是一种基于拓扑的新验证措施,该测量量化了感兴趣结构的大小,量化了拓扑缺陷的大小。使用两个公开可用的数据集,我们根据三个基于27个胎儿大脑的重叠,距离和拓扑的互补指标进行了定量评估我们提出的方法。我们的结果证明,我们的拓扑综合框架的表现优于超分辨率重建的临床MRI的最先进的培训损失功能,不仅处于形状正确性,而且在经典评估指标中。此外,由三名专家定性地评估了临床采集中另外31个室外SR重建的结果。专家的共识将我们的TOPOCP方法评为100 \%的最佳分割案例,并具有高度专家的一致性。总体而言,定量结果和定性结果在妊娠年龄和案例范围内,都支持我们拓扑引导的胎儿CP分割框架的普遍性和附加值。

The fetal cortical plate (CP) undergoes drastic morphological changes during the in utero development. Therefore, CP growth and folding patterns are key indicator in the assessment of the brain development and maturation. Magnetic resonance imaging (MRI) offers specific insights for the analysis of quantitative imaging biomarkers. Nonetheless, accurate and, more importantly, topologically correct MR image segmentation remains the key baseline to such analysis. In this study, we propose a deep learning segmentation framework for automatic and morphologically consistent segmentation of the CP in fetal brain MRI. Our contribution is two fold. First, we generalized a multi-dimensional topological loss function in order to enhance the topological accuracy. Second, we introduced hole ratio, a new topology-based validation measure that quantifies the size of the topological defects taking into account the size of the structure of interest. Using two publicly available datasets, we quantitatively evaluated our proposed method based on three complementary metrics which are overlap-, distance- and topology-based on 27 fetal brains. Our results evidence that our topology-integrative framework outperforms state-of-the-art training loss functions on super-resolution reconstructed clinical MRI, not only in shape correctness but also in the classical evaluation metrics. Furthermore, results on additional 31 out-of-domain SR reconstructions from clinical acquisitions were qualitatively assessed by three experts. The experts' consensus ranked our TopoCP method as the best segmentation in 100\% of the cases with a high inter-expert agreement. Overall, both quantitative and qualitative results, on a wide range of gestational ages and number of cases, support the generalizability and added value of our topology-guided framework for fetal CP segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源