论文标题

基于机器学习的测试气味检测

Machine Learning-Based Test Smell Detection

论文作者

Pontillo, Valeria, d'Aragona, Dario Amoroso, Pecorelli, Fabiano, Di Nucci, Dario, Ferrucci, Filomena, Palomba, Fabio

论文摘要

上下文:测试气味是开发测试用例时采用的亚最佳设计选择的症状。先前的研究证明了它们对测试代码可维护性和有效性的有害性。因此,研究人员一直在提出基于启发式的自动化技术来检测它们。但是,此类探测器的性能仍然有限,并且取决于要调整的阈值。 目的:我们提出了基于机器学习来检测四种测试气味的新型测试气味检测方法的设计和实验。 方法:我们计划开发最大的手动验证测试气味数据集。该数据集将被利用来训练六个机器学习者,并在跨项目内和跨项目内评估其功能。最后,我们计划将我们的方法与最新的基于启发式的技术进行比较。

Context: Test smells are symptoms of sub-optimal design choices adopted when developing test cases. Previous studies have proved their harmfulness for test code maintainability and effectiveness. Therefore, researchers have been proposing automated, heuristic-based techniques to detect them. However, the performance of such detectors is still limited and dependent on thresholds to be tuned. Objective: We propose the design and experimentation of a novel test smell detection approach based on machine learning to detect four test smells. Method: We plan to develop the largest dataset of manually-validated test smells. This dataset will be leveraged to train six machine learners and assess their capabilities in within- and cross-project scenarios. Finally, we plan to compare our approach with state-of-the-art heuristic-based techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源