论文标题

学习有效的抽象计划模型,选择要预测的内容

Learning Efficient Abstract Planning Models that Choose What to Predict

论文作者

Kumar, Nishanth, McClinton, Willie, Chitnis, Rohan, Silver, Tom, Lozano-Pérez, Tomás, Kaelbling, Leslie Pack

论文摘要

一种有效的方法来解决具有连续状态和动作空间的机器人域中的长途任务,这是双重计划,其中使用了对环境抽象的高级搜索来指导低级决策。最近的工作表明了如何通过以符号操作员和神经采样器的形式学习抽象模型来实现此类杂种计划。在这项工作中,我们表明现有的符号操作员学习方法在许多机器人域中缺乏,在许多机器人域中,机器人的行为倾向于在抽象状态下引起大量无关的变化。这主要是因为他们尝试学习操作员,以准确预测抽象状态中所有观察到的变化。为了克服这个问题,我们建议通过仅通过建模摘要计划来实现指定目标所需的更改来学习“选择要预测的东西”的操作员。在实验上,我们表明我们的方法学习了运营商,这些操作员可以在10个不同的混合机器人域上进行有效的计划,其中包括挑战性行为100基准的4个,同时将其推广到新颖的初始状态,目标和物体。

An effective approach to solving long-horizon tasks in robotics domains with continuous state and action spaces is bilevel planning, wherein a high-level search over an abstraction of an environment is used to guide low-level decision-making. Recent work has shown how to enable such bilevel planning by learning abstract models in the form of symbolic operators and neural samplers. In this work, we show that existing symbolic operator learning approaches fall short in many robotics domains where a robot's actions tend to cause a large number of irrelevant changes in the abstract state. This is primarily because they attempt to learn operators that exactly predict all observed changes in the abstract state. To overcome this issue, we propose to learn operators that 'choose what to predict' by only modelling changes necessary for abstract planning to achieve specified goals. Experimentally, we show that our approach learns operators that lead to efficient planning across 10 different hybrid robotics domains, including 4 from the challenging BEHAVIOR-100 benchmark, while generalizing to novel initial states, goals, and objects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源