论文标题
Na-Y-ZR-CL固体电解质中结构和传导性能的合成控制
Synthetic control of structure and conduction properties in Na-Y-Zr-Cl solid electrolytes
论文作者
论文摘要
在开发低成本,可持续和能量浓密的电池时,基于氯化物的化合物是由于其高NA-ION电导率和氧化稳定性而有望用于固态电池的天主电解质材料。但是,进一步改善NA-ON传导的能力需要了解远程和局部结构特征对这些系统中运输的影响。在这项研究中,我们利用不同的合成方法来控制Na-Y-ZR-CL固体电解质中的多态性和阳离子障碍,并询问对Na-ion传导的影响。我们证明存在更有导电的P2 $ _1 $/N多晶型na $ _2 $ _2 $ zrcl $ _6 $在球铣中形成。在na $ _3 $ ycl $ _6 $中,r $ \ bar {3} $ polymorph被证明比其P2 $ _1 $ _1 $/n对应物更具传导性,因为Y Sublattice上存在固有的空缺和障碍。 Transition metal ordering in the Na$_{2.25}$Y$_{0.25}$Zr$_{0.75}$Cl$_6$ composition strongly impacts Na-ion transport, where a greater mixing of Y$^{3+}$ and Zr$^{4+}$ on the transition metal sublattice facilitates ion migration through partial activation of Cl rotations at relevant温度。总体而言,Na-ion转运敏感地取决于合成过程中稳定的相位和过渡金属分布。这些结果可能可以推广到其他卤化物组成,并表明对合成方案的控制和结果结构是追求改善的高压固态钠离子电池的关键。
In the development of low cost, sustainable, and energy-dense batteries, chloride-based compounds are promising catholyte materials for solid-state batteries owing to their high Na-ion conductivities and oxidative stabilities. The ability to further improve Na-ion conduction, however, requires an understanding of the impact of long-range and local structural features on transport in these systems. In this study, we leverage different synthesis methods to control polymorphism and cation disorder in Na-Y-Zr-Cl solid electrolytes and interrogate the impact on Na-ion conduction. We demonstrate the existence of a more conductive P2$_1$/n polymorph of Na$_2$ZrCl$_6$ formed upon ball milling. In Na$_3$YCl$_6$, the R$\bar{3}$ polymorph is shown to be more conductive than its P2$_1$/n counterpart owing to the presence of intrinsic vacancies and disorder on the Y sublattice. Transition metal ordering in the Na$_{2.25}$Y$_{0.25}$Zr$_{0.75}$Cl$_6$ composition strongly impacts Na-ion transport, where a greater mixing of Y$^{3+}$ and Zr$^{4+}$ on the transition metal sublattice facilitates ion migration through partial activation of Cl rotations at relevant temperatures. Overall, Na-ion transport sensitively depends on the phases and transition metal distributions stabilized during synthesis. These results are likely generalizable to other halide compositions and indicate that achieving control over the synthetic protocol and resultant structure is key in the pursuit of improved catholytes for high voltage solid-state sodium-ion batteries.