论文标题
一维完全可溶解的准二级模型中的临界相二元性
Critical phase dualities in 1D exactly-solvable quasiperiodic models
论文作者
论文摘要
我们提出了一类可解决的1D准二元紧密结合模型,其中包含扩展,局部和临界阶段,并由非平凡的迁移率边缘隔开。限制案例包括Aubry-André模型以及PRL 114、146601和PRL 104、070601的模型。分析处理是从确认这些模型作为最近在ARXIV中提出的重新分类组的新型固定点的新型固定点类型,用于ARXIV:2206.13549,用于表征quasiperods solustiser solustire solustiers usipersipers solustiser syperers ressipersipers soludtir systeral soludtir soludenters。除了已知的限制之外,所提出的一类模型将先前遇到的局部偏置二元性转换扩展到多重分裂临界阶段的点。除了对多型二元性的实验确认外,在光学晶格中实现了所提出的模型类别,还可以稳定多重临界临界相和非平凡的迁移率边缘,而无需先前提议所需的无界电势。
We propose a solvable class of 1D quasiperiodic tight-binding models encompassing extended, localized, and critical phases, separated by nontrivial mobility edges. Limiting cases include the Aubry-André model and the models of PRL 114, 146601 and PRL 104, 070601. The analytical treatment follows from recognizing these models as a novel type of fixed-points of the renormalization group procedure recently proposed in arXiv:2206.13549 for characterizing phases of quasiperiodic structures. Beyond known limits, the proposed class of models extends previously encountered localized-delocalized duality transformations to points within multifractal critical phases. Besides an experimental confirmation of multifractal duality, realizing the proposed class of models in optical lattices allows stabilizing multifractal critical phases and non-trivial mobility edges without the need for the unbounded potentials required by previous proposals.