论文标题

评估可证明安全保护隐私的实体解决PPJOIN使用同形加密的可行性

Evaluating the Feasibility of a Provably Secure Privacy-Preserving Entity Resolution Adaptation of PPJoin using Homomorphic Encryption

论文作者

Ghai, Tanmay, Yao, Yixiang, Ravi, Srivatsan, Szekely, Pedro

论文摘要

实体分辨率是消除歧义记录的任务,该记录指的是现实世界中同一实体的任务。在这项工作中,我们探索了通过同型加密来适应最有效,最准确的基于JACCARD的实体分辨率算法 - PPJoin,以私有域。在此方面,我们介绍了PPJoin(He-Ppjoin)的精确适应,详细介绍了某些微妙的数据结构修改以及正确性和隐私所需的算法添加。我们通过扩展Palisade同型加密库来实现HE-PPJOIN,并在其上进行评估以进行准确性并产生开销。此外,我们直接将He-Ppjoin与P4Join进行了比较,P4Join是PPJoin的现有隐私保护变体,它通过证明对我们的适应性效率,准确性和隐私属性进行了严格分析,并通过我们的适应性以及P4Joikin中的这些属性表征了这些属性来实现的效率,准确性和隐私属性。

Entity resolution is the task of disambiguating records that refer to the same entity in the real world. In this work, we explore adapting one of the most efficient and accurate Jaccard-based entity resolution algorithms - PPJoin, to the private domain via homomorphic encryption. Towards this, we present our precise adaptation of PPJoin (HE-PPJoin) that details certain subtle data structure modifications and algorithmic additions needed for correctness and privacy. We implement HE-PPJoin by extending the PALISADE homomorphic encryption library and evaluate over it for accuracy and incurred overhead. Furthermore, we directly compare HE-PPJoin against P4Join, an existing privacy-preserving variant of PPJoin which uses fingerprinting for raw content obfuscation, by demonstrating a rigorous analysis of the efficiency, accuracy, and privacy properties achieved by our adaptation as well as a characterization of those same attributes in P4Join.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源