论文标题

两个人比一个人更好:强大的学习符合多分支模型

Two Heads are Better than One: Robust Learning Meets Multi-branch Models

论文作者

Zhang, Zongyuan, Bu, Qingwen, Duan, Tianyang, Lin, Zheng, Qing, Yuhao, Fang, Zihan, Cui, Heming, Huang, Dong

论文摘要

深度神经网络(DNN)容易受到对抗性示例的影响,其中DNN由于包含不可察觉的扰动的输入而被误导为虚假输出。对抗性训练是一种可靠有效的防御方法,可能会大大减少神经网络的脆弱性,并成为强大学习的事实上的标准。尽管许多最近的作品实践了以数据为中心的哲学,例如如何产生更好的对抗性示例或使用生成模型来产生其他培训数据,但我们回顾了模型本身,并从深度特征分布的角度重新审视了对抗性的鲁棒性,这是一种深刻的互补性。在本文中,我们建议\ textit {分支正交性对抗训练}(bort)以获得最先进的性能,仅使用原始数据集用于对抗性培训。为了练习我们整合多个正交解决方案空间的设计思想,我们利用一个简单明了的多分支神经网络,可消除对抗性攻击而不会增加推理时间。我们启发提出相应的损耗函数,分支 - 正交损失,以使多支出模型正交的每个解决方案空间。我们分别在$ \ ell _ {\ infty} $ norm-and-norm-norm-dound-norm-norm-dough-norm-norm-dough-norm-dough-norm-norm-dough的扰动方面分别评估了我们在CIFAR-10,CIFAR-100和SVHN上的方法。进行了详尽的实验,以表明我们的方法超出了所有最新方法,而无需任何技巧。与所有不使用其他数据进行培训的方法相比,我们的模型在CIFAR-10和CIFAR-100上实现了67.3 \%和41.5 \%的鲁棒精度(在最先进的艺术品上提高了+7.23 \%和+9.07 \%)。我们还使用比我们的训练组大得多的方法。

Deep neural networks (DNNs) are vulnerable to adversarial examples, in which DNNs are misled to false outputs due to inputs containing imperceptible perturbations. Adversarial training, a reliable and effective method of defense, may significantly reduce the vulnerability of neural networks and becomes the de facto standard for robust learning. While many recent works practice the data-centric philosophy, such as how to generate better adversarial examples or use generative models to produce additional training data, we look back to the models themselves and revisit the adversarial robustness from the perspective of deep feature distribution as an insightful complementarity. In this paper, we propose \textit{Branch Orthogonality adveRsarial Training} (BORT) to obtain state-of-the-art performance with solely the original dataset for adversarial training. To practice our design idea of integrating multiple orthogonal solution spaces, we leverage a simple and straightforward multi-branch neural network that eclipses adversarial attacks with no increase in inference time. We heuristically propose a corresponding loss function, branch-orthogonal loss, to make each solution space of the multi-branch model orthogonal. We evaluate our approach on CIFAR-10, CIFAR-100 and SVHN against $\ell_{\infty}$ norm-bounded perturbations of size $ε= 8/255$, respectively. Exhaustive experiments are conducted to show that our method goes beyond all state-of-the-art methods without any tricks. Compared to all methods that do not use additional data for training, our models achieve 67.3\% and 41.5\% robust accuracy on CIFAR-10 and CIFAR-100 (improving upon the state-of-the-art by +7.23\% and +9.07\%). We also outperform methods using a training set with a far larger scale than ours.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源