论文标题

计算与交换环的共同最大理想图的强度度量

Computing the strong metric dimension for co-maximal ideal graphs of commutative rings

论文作者

Shahriyari, R., Nikandish, R., Tehranian, A., Rasouli, H.

论文摘要

令$ r $为具有身份的交换戒指。 $ r $的联合最大理想图,由$γ(r)$表示,是一个简单的图表,其顶点是$ r $的适当理想,在$ r $ $ r $的jacobson根部不包含,两个不同的顶点$ i,j $在且仅当$ i+i+j = r $时才相邻。在本文中,我们使用Gallai $^{^,} $ s定理和强分辨率图的概念来计算交通戒指的共同最佳理想图的强度度量。根据是否减小环的明确公式,确定了强度度量的公式。

Let $R$ be a commutative ring with identity. The co-maximal ideal graph of $R$, denoted by $Γ(R)$, is a simple graph whose vertices are proper ideals of $R$ which are not contained in the Jacobson radical of $R$ and two distinct vertices $I, J$ are adjacent if and only if $I+J=R$. In this paper, we use Gallai$^{^,}$s Theorem and the concept of strong resolving graph to compute the strong metric dimension for co-maximal ideal graphs of commutative rings. Explicit formulae for the strong metric dimension, depending on whether the ring is reduced or not, are established.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源