论文标题
Idan:图像差异注意网络用于变更检测
IDAN: Image Difference Attention Network for Change Detection
论文作者
论文摘要
遥感图像变更检测在灾难评估和城市规划中至关重要。主流方法是使用编码器模型来检测两个输入图像的更改区域。由于遥感图像的变化含量具有广泛范围和多样性的特征,因此有必要通过增加注意机制来提高网络的检测准确性,而注意机制通常包括:挤压和激发块,非本地和卷积障碍物注意模块等。这些方法考虑了通道或通道内部不同位置特征的重要性,但无法感知输入图像之间的差异。在本文中,我们提出了一个新颖的图像差异注意网络(IDAN)。在图像预处理阶段,我们使用预训练模型来提取两个输入图像之间的特征差异,以获得特征差异图(FD-MAP)和用于边缘检测的Canny以获得边缘差图(ED-MAP)。在图像特征提取阶段中,FD-MAP和ED-MAP分别输入了特征差异注意模块和边缘补偿模块,以优化IDAN提取的功能。最后,通过特征差异操作获得更改检测结果。 Idan全面考虑了图像的区域和边缘特征的差异,从而优化了提取的图像特征。实验结果表明,与WHU数据集和Levir-CD数据集的基线模型相比,IDAN的F1得分分别提高了1.62%和1.98%。
Remote sensing image change detection is of great importance in disaster assessment and urban planning. The mainstream method is to use encoder-decoder models to detect the change region of two input images. Since the change content of remote sensing images has the characteristics of wide scale range and variety, it is necessary to improve the detection accuracy of the network by increasing the attention mechanism, which commonly includes: Squeeze-and-Excitation block, Non-local and Convolutional Block Attention Module, among others. These methods consider the importance of different location features between channels or within channels, but fail to perceive the differences between input images. In this paper, we propose a novel image difference attention network (IDAN). In the image preprocessing stage, we use a pre-training model to extract the feature differences between two input images to obtain the feature difference map (FD-map), and Canny for edge detection to obtain the edge difference map (ED-map). In the image feature extracting stage, the FD-map and ED-map are input to the feature difference attention module and edge compensation module, respectively, to optimize the features extracted by IDAN. Finally, the change detection result is obtained through the feature difference operation. IDAN comprehensively considers the differences in regional and edge features of images and thus optimizes the extracted image features. The experimental results demonstrate that the F1-score of IDAN improves 1.62% and 1.98% compared to the baseline model on WHU dataset and LEVIR-CD dataset, respectively.