论文标题

使用预训练的序列到序列模型总结医院进度笔记中的患者问题

Summarizing Patients Problems from Hospital Progress Notes Using Pre-trained Sequence-to-Sequence Models

论文作者

Gao, Yanjun, Dligach, Dmitriy, Miller, Timothy, Xu, Dongfang, Churpek, Matthew M., Afshar, Majid

论文摘要

使用自然语言处理方法自动概括患者的主要进度注释中的主要问题,有助于与医院环境中的信息和认知超负荷作斗争,并可能为提供者提供计算机化的诊断决策支持。问题清单摘要需要一个模型来理解,抽象和生成临床文档。在这项工作中,我们提出了一项新的NLP任务,旨在在住院期间使用提供者进度注释的意见来在患者的日常护理计划中产生一系列问题。我们研究了两个最先进的SEQ2SEQ变压器体系结构T5和Bart的性能,以解决此问题。我们提供了一个基于进度注释的语料库,该注释是从公共可用的电子健康记录进度注释中的重症监护(MIMIC)-III中的。 T5和BART对通用域文本进行了培训,我们尝试了数据增强方法和域的适应性预训练方法,以增加对医学词汇和知识的接触。评估方法包括胭脂,Bertscore,嵌入句子上的余弦相似性以及医学概念的F-评分。结果表明,与基于规则的系统和通用域预训练的语言模型相比,具有领域自适应预训练的T5可实现显着的性能增长,这表明可以解决问题摘要任务的有希望的方向。

Automatically summarizing patients' main problems from daily progress notes using natural language processing methods helps to battle against information and cognitive overload in hospital settings and potentially assists providers with computerized diagnostic decision support. Problem list summarization requires a model to understand, abstract, and generate clinical documentation. In this work, we propose a new NLP task that aims to generate a list of problems in a patient's daily care plan using input from the provider's progress notes during hospitalization. We investigate the performance of T5 and BART, two state-of-the-art seq2seq transformer architectures, in solving this problem. We provide a corpus built on top of progress notes from publicly available electronic health record progress notes in the Medical Information Mart for Intensive Care (MIMIC)-III. T5 and BART are trained on general domain text, and we experiment with a data augmentation method and a domain adaptation pre-training method to increase exposure to medical vocabulary and knowledge. Evaluation methods include ROUGE, BERTScore, cosine similarity on sentence embedding, and F-score on medical concepts. Results show that T5 with domain adaptive pre-training achieves significant performance gains compared to a rule-based system and general domain pre-trained language models, indicating a promising direction for tackling the problem summarization task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源