论文标题
使用预训练的语言模型在临床叙事中提取药物变化
Extracting Medication Changes in Clinical Narratives using Pre-trained Language Models
论文作者
论文摘要
患者药物的准确详细说明,包括患者时间表中的药物改变,对于医疗保健提供者提供适当的患者护理至关重要。医疗保健提供者或患者本身可能会引发患者药物的改变。用药更改采用多种形式,包括处方药和相关剂量修饰。这些更改提供了有关患者的整体健康以及导致当前护理的基本原理的信息。然后,未来的护理可以基于患者的最终状态。这项工作探讨了从自由文本临床注释中自动提取药物变化信息。上下文药物事件数据集(CMED)是临床注释的语料库,其注释可以通过多种变化相关的属性来表征药物变化,包括变化的类型(开始,停止,增加等),变化,时间性,变化,变化的可能性和负面因素。使用CMED,我们确定了临床文本中的药物提及,并提出了三个新型的基于BERT的新型基于BERT的系统,以解决注释的药物变化特征。我们证明,我们提出的系统改善了药物变更分类的性能,而不是探索CMED的初始工作。
An accurate and detailed account of patient medications, including medication changes within the patient timeline, is essential for healthcare providers to provide appropriate patient care. Healthcare providers or the patients themselves may initiate changes to patient medication. Medication changes take many forms, including prescribed medication and associated dosage modification. These changes provide information about the overall health of the patient and the rationale that led to the current care. Future care can then build on the resulting state of the patient. This work explores the automatic extraction of medication change information from free-text clinical notes. The Contextual Medication Event Dataset (CMED) is a corpus of clinical notes with annotations that characterize medication changes through multiple change-related attributes, including the type of change (start, stop, increase, etc.), initiator of the change, temporality, change likelihood, and negation. Using CMED, we identify medication mentions in clinical text and propose three novel high-performing BERT-based systems that resolve the annotated medication change characteristics. We demonstrate that our proposed systems improve medication change classification performance over the initial work exploring CMED.